
UNICORE Gateway

UNICORE GATEWAY

UNICORE Team

Document Version: 1.1.0
Component Version: 7.6.0
Date: 16 03 2016

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.



UNICORE Gateway

Contents

1 Introduction 1

2 Installation 2

2.1 Installation from the core server bundle . . . . . . . . . . . . . . . . . . . . . 2

2.2 Installation from a Linux package (rpm or deb) . . . . . . . . . . . . . . . . . 2

3 Upgrading 3

4 Configuration 3

4.1 Java and environment settings: startup.properties . . . . . . . . . . . . . . . . 3

4.2 Configuring sites: connections.properties . . . . . . . . . . . . . . . . . . . . 3

4.3 Main server settings: gateway.properties . . . . . . . . . . . . . . . . . . . . . 4

4.4 Certificate-less end-user access . . . . . . . . . . . . . . . . . . . . . . . . . . 4

4.5 security.properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.6 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Using Apache httpd as a frontend 21

6 Using the Gateway for failover and/or loadbalancing of UNICORE sites 21

6.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2 Available Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7 Gateway failover and migration 23

7.1 Gateway’s migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.2 Failover and loadbalancing of the Gateway . . . . . . . . . . . . . . . . . . . . 23

8 Building the Gateway from source 24



UNICORE Gateway 1

This user manual provides information on running and using the UNICORE gateway. Please
note also the following places for getting more information:

UNICORE Website: http://www.unicore.eu

Support list: unicore-support@lists.sf.net

Developer’s list: unicore-devel@lists.sf.net

1 Introduction

The Gateway is the entry point into a UNICORE site, routing HTTPS traffic to servers like UNI-
CORE/X. It is installed in front of any networking firewall. It authenticates incoming messages
and forwards them to their intended destination. The Gateway receives the reply and sends it
back to the client. In this way, only a single open port in a site’s firewall has to be configured.

LIMITATIONS
This forwarding process only works for “most” HTTP requests, and is not a complete HTTP
reverse proxy implementation. For example, it is not possible to run a full, complex web ap-
plication like the UNICORE portal "behind" the gateway. Check the respective components’s
manual whether it can be run behind the Gateway.

In effect, traffic to a virtual URL, e.g. https://mygateway:8088/Alpha is forwarded to the real
URL, e.g. https://host1:7777.

The mappings of virtual URL to real URL for the available sites are listed in a configuration
file connections.properties. Additionally, the gateway supports dynamic registration
of sites.

The second functionality of the gateway is authentication of incoming requests. Connections
to the gateway are made using client-authenticated SSL, so the gateway will check whether the
caller presents a certificate issued by a trusted authority. Information about the authenticated
client is forwarded to services behind the gateway in UNICORE proprietary format (as SOAP
header element).

http://www.unicore.eu
mailto:unicore-support@lists.sf.net
mailto:unicore-devel@lists.sf.net


UNICORE Gateway 2

IMPORTANT NOTE ON PATHS
The UNICORE Gateway is distributed either as a platform independent and portable bundle
(as a part of the UNICORE core server package) or as an installable, platform dependent
package format such as RPM.
Depending on the installation method, the paths to various Gateway files are different. If
installing using a distribution-specific package the following paths are used:

CONF=/etc/unicore/gateway
BIN=/usr/sbin
LOG=/var/log/unicore/gateway

If installing using the portable bundle all Gateway files are installed under a single directory.
Path prefixes then are as follows, where INST is a directory where the Gateway was installed:

CONF=INST/conf
BIN=INST/bin
LOG=INST/log

The above variables (CONF, BIN and LOG) are used throughout the rest of this manual.

2 Installation

The UNICORE Gateway is distributed in the following formats:

1. As a part of platform independent installation bundle called UNICORE core server bun-
dle. The UNICORE core server bundle is provided in two forms: one with a graphical
installer and one with a command line installer.

2. As a binary, platform-specific package available currently for RedHat (Centos) and De-
bian platforms. Those packages are not tested on all possible platforms, but should work
without any problems with other versions of similar distributions, e.g. SL6, Centos, or
Fedora.

2.1 Installation from the core server bundle

Download the core server bundle from the UNICORE project website.

If you use the graphical installer, follow the on-screen instructions and do not forget to enable
the Gateway checkbox when prompted.

If you use the console installer, please review the README file available after extracting the
bundle. You don’t have to change any defaults as the Gateway is installed by default.

2.2 Installation from a Linux package (rpm or deb)

Use your distribution’s package manager to install.



UNICORE Gateway 3

3 Upgrading

The general update procedure is presented below, with possible variations:

1. Stop the old Gateway.

2. Update the server package. This step mostly applies for RPM/DEB managed installations.
For Quickstart installation it is enough to replace the *.jar files with the new ones.

3. Start the newly installed Gateway.

4. Verify log file and fix any problems reported.

4 Configuration

The gateway is configured using a set of configuration files, which reside in the CONF subdirec-
tory.

4.1 Java and environment settings: startup.properties

This file contains settings related to the Java VM, such as the Java command to use, memory
settings, library paths etc.

4.2 Configuring sites: connections.properties

This is a simple list connecting the names of sites and their physical addresses. An example is:

DEMO-SITE = https://localhost:7777
REGISTRY = https://localhost:7778

If this file is modified, the gateway will re-read it at runtime, so there is no need to restart the
gateway in order to add or remove sites.

Optionally administrator can enable a possibility for dynamic site registration at runtime, see
Section 4.4.2 for details. Then this file should contain only the static entries (or none if all sites
register dynamically).

Further options for back-end sites configuration are presented in Section 6.



UNICORE Gateway 4

4.3 Main server settings: gateway.properties

Use the gateway.hostname property to configure the network interface and port the gate-
way will listen on. You can also select between https and http protocol, though in almost all
cases https will be used.

Example:

gateway.hostname = https://192.168.100.123:8080

Note
If you set the host to 0.0.0.0, the gateway will listen on all network interfaces of the host
machine, else it will listen only on the specified one.

If the scheme of the hostname URL is set to https, the Gateway uses the configuration data from
security.properties to configure the HTTPS settings.

4.4 Certificate-less end-user access

With UNICORE 7, it is possible that end-users do not have client certificates. To enable them to
connect, the Gateway needs to accept TLS connections without a client certificate. To configure
this, set the following in gateway.properties

gateway.httpServer.requireClientAuthn=false

4.4.1 Scalability settings

To fine-tune the operational parameters of the embedded Jetty server, you can set advanced
HTTP server parameters. See Section 4.4.5 for details. Among others you can use the non-
blocking IO connector offered by Jetty, which will scale up to higher numbers of concurrent
connections than the default connector.

The gateway acts as a https client for the VSites behind it. The number of concurrent calls is
limited, and controlled by two parameters:

# maximum total number of concurrent calls to Vsites
gateway.client.maxTotal=100
# total number of concurrent calls per site
gateway.client.maxPerService=20

You can also control the limit on the maximum SOAP header size which is allowed by the
gateway. Typically you don’t have to touch this parameter. However if your clients do
produce very big SOAP headers and gateway blocks them, you can increase the limit. Note that
such a giant SOAP header usually means that the client is not behaving in a sane way, e.g. is
trying to perform a DoS attack.



UNICORE Gateway 5

# maximum size of an accepted SOAP header, in bytes
gateway.soapMaxHeader=102400

Note that gateway may consume this amount of memory (plus some extra amount for other
data) for each opened connection. Therefore, this value multiplied by the number of maximum
allowed connections, should be significantly lower, then the total memory available for the
gateway.

4.4.2 Dynamic registration of Vsites

Dynamic registration is controlled by three properties in CONF/gateway.properties file:

gateway.registration.enable=true

If set to true, the gateway will accept dynamic registrations which are made by sending a HTTP
POST request to the URL /VSITE_REGISTRATION_REQUEST

Filters can be set to forbid access of certain hosts, or to require certain strings in the Vsite
addresses. For example:

gateway.registration.deny=foo.org example.org

will deny registration if the remote hostname contains foo.org or example.org. Conversely,

gateway.registration.allow=mydomain.org

will only accept registrations if the remote address contains mydomain.org. These two (deny
and allow) can be combined.

4.4.3 Web interface ("monkey page")

For testing and simple monitoring purposes, the gateway displays a website showing detailed
site information (the details view can be disabled). Once the Gateway is running, open up a
browser and navigate to https://<gateway_host>:8080 (or whichever URL the gateway is run-
ning on). As the gateway usually runs using SSL, you will need to import a suitable client
certificate into your web browser.

A HTML form for testing the dynamic registration is available as well, by clicking the link in
the footer of the main gateway page.

To disable the Vsite details page, set

gateway.disableWebpage=true

4.4.4 Main options reference

https://<gateway_host>:8080


UNICORE Gateway 6

Property name Type Default
value /
mandatory

Description

gateway.hostname string mandatory
to be set

external gateway bind
address

gateway.
registration.
allow

string - Space separated list of
allowed hosts for dynamic
registration.

gateway.
registration.
deny

string - Space separated list of
denied hosts for dynamic
registration.

gateway.
registration.
enable

[true, false] false Whether dynamic
registration of sites is
enabled.

--- Passing Consignor info ---
gateway.
consignorTokenTi
meTolerance

integer >= 0 30 The validity time of the
authenticated client
information passed to
backend sites will start that
many seconds before the
real authentication. It is
used to mask time
synchronization problems
between machines.

gateway.consigno
rTokenValidity

integer >= 1 60 What is the validity time of
the authenticated client
information passed to
backend sites. Increase it if
there machines clocks are
not synhronized.

gateway.signCons
ignorToken

[true, false] false Controls whether
information about the
authenticated client (the
consignor) passed to
backend sites should be
signed, or not. Signing is
slower, but is required
when sites may be reached
directly, bypassing the
Gateway.

--- Gateway→ Site client ---
gateway.client.
chunked

[true, false] true Controls whether chunked
passing of HTTP requests
to backend sites is
supported.



UNICORE Gateway 7

Property name Type Default
value /
mandatory

Description

gateway.client.
connectionTime
out

integer number 30000 Connection timeout, used
when connecting to
backend sites.

gateway.client.
expectContinue

[true, false] true Controls whether the HTTP
expec-continue mechanism
is enaled on connections to
backend sites.

gateway.client.
gzip

[true, false] true Controls whether support
for compression is
announced to backend sites.

gateway.client.
keepAlive

[true, false] true Whether to keep alive the
connections to backend
sites.

gateway.client.
maxPerService

integer number 20 Maximum allowed number
of connections per backend
site.

gateway.client.
maxTotal

integer number 100 Maximum total number of
connections to backend
sites allowed.

gateway.client.
socketTimeout

integer number 30000 Connection timeout, used
when connecting to
backend sites.

--- Advanced ---
gateway.
disableWebpage

[true, false] false Whether the (so called
monkey) status web page
should be disabled.

gateway.
externalHostname

string not set External address of the
gateway, when it is
accessible through a
frontend server as Apache
HTTP.

gateway.
soapMaxHeader

integer [1024
—
1024000000]

102400 Size in bytes of the
accepted SOAP header. In
the most cases you don’t
need to change it.

4.4.5 Configuring advanced HTTP server settings

UNICORE servers are using an embedded Jetty HTTP server. In most cases the default config-
uration should be perfectly fine. However, for some sites (e.g. experiencing an extremely high
load) HTTP server settings can be fine-tuned with the following parameters.



UNICORE Gateway 8

Property name Type Default
value /
mandatory

Description

gateway.
httpServer.disab
ledCipherSuites

string empty
string

Space separated list of SSL
cipher suites to be disabled.
Names of the ciphers must
adhere to the standard Java
cipher names, available
here:
http://docs.oracle.com/-
javase/8/docs/technotes/-
guides/security/-
SunProviders.html#SupportedCipherSuites

gateway.
httpServer.
enableHsts

[true, false] false Control whether HTTP
strict transport security is
enabled. It is a good and
strongly suggested security
mechanism for all
production sites. At the
same time it can not be
used with self-signed or not
issued by a generally
trusted CA server
certificates, as with HSTS a
user can’t opt in to enter
such site.

gateway.
httpServer.
fastRandom

[true, false] false Use insecure, but fast
pseudo random generator to
generate session ids instead
of secure generator for SSL
sockets.

gateway.
httpServer.gzip.
enable

[true, false] false Controls whether to enable
compression of HTTP
responses.

gateway.
httpServer.gzip.
minGzipSize

integer number 100000 Specifies the minimal size
of message that should be
compressed.

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites


UNICORE Gateway 9

Property name Type Default
value /
mandatory

Description

gateway.
httpServer.highL
oadConnections

integer number 200 If the number of
connections exceeds this
amount, then the connector
is put into a special low on
resources state. Existing
connections will be closed
faster. Note that the server
will also go to the low on
resources mode if there are
no available threads in the
pool. You can set this to 0
to disable the connections
limit (and have only thread
pool size governed limit). If
set to a negative number
then the low on resources
mode won’t be used at all.

gateway.
httpServer.
lowResourceMaxId
leTime

integer >= 1 100 In low resource conditions,
time (in ms.) before an idle
connection will time out.

gateway.
httpServer.
maxIdleTime

integer >= 1 200000 Time (in ms.) before an idle
connection will time out. It
should be large enough not
to expire connections with
slow clients, values below
30s are getting quite risky.

gateway.
httpServer.
maxThreads

integer number 255 Maximum number of
threads to have in the thread
pool for processing HTTP
connections. Note that this
number will be increased
with few additional threads
to handle connectors.

gateway.
httpServer.
minThreads

integer >= 1 1 Minimum number of
threads to have in the thread
pool for processing HTTP
connections. Note that this
number will be increased
with few additional threads
to handle connectors.



UNICORE Gateway 10

Property name Type Default
value /
mandatory

Description

gateway.
httpServer.requi
reClientAuthn

[true, false] true Controls whether the SSL
socket requires client-side
authentication.

gateway.
httpServer.
soLingerTime

integer number -1 Socket linger time.

gateway.
httpServer.
useNIO

[true, false] true DEPRECATED, no effect

gateway.
httpServer.
wantClientAuthn

[true, false] true Controls whether the SSL
socket accepts (but does not
require) client-side
authentication.

gateway.
httpServer.
xFrameAllowed

string http://
localh
ost

URI origin that is allowed
to embed web interface
inside a (i)frame.
Meaningful only if the
xFrameOptions is set to
allowFrom. The value
should be in the form:
http[s]://host[:port]

gateway.
httpServer.
xFrameOptions

[deny,
sameOrigin,
allowFrom,
allow]

deny Defines whether a
clickjacking prevention
should be turned on, by
insertionof the
X-Frame-Options HTTP
header. The allow value
disables the feature. See the
RFC 7034 for details. Note
that for the allowFrom you
should define also the
xFrameAllowed option and
it is not fully supported by
all the browsers.

Example

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.



UNICORE Gateway 11

In this example we will turn on compression of all responses bigger then 50kB (assuming that
the client supports decompression). Additionally we are limiting the number of concurrent
clients that can be served to more or less 50, while keeping 10 threads ready all the time to
server new clients quicker.

jetty.gzip.enable=true
jetty.gzip.minGzipSize=51200
jetty.maxThreads=50
jetty.minThreads=10

4.5 security.properties

In the security.properties file, the trust store and gateway credential is configured.

4.5.1 Configuring PKI trust settings

Public Key Infrastructure (PKI) trust settings are used to validate certificates. This is performed,
in the first place when a connection with a remote peer is initiated over the network, using the
SSL (or TLS) protocol. Additionally certificate validation can happen in few other situations,
e.g. when checking digital signatures of various sensitive pieces of data.

Certificates validation is primarily configured using a set of initially trusted certificates of so
called Certificate Authorities (CAs). Those trusted certificates are also known as trust anchors
and their collection is called a trust store.

Except of trust anchors validation mechanism can use additional input for checking if a certifi-
cate being checked was not revoked and if its subject is in a permitted namespace.

UNICORE allows for different types of trust stores. All of them are configured using a set of
properties.

• Keystore trust store - the only format supported in older UNICORE versions. Trusted cer-
tificates are stored in a single binary file in JKS or PKCS12 format. The file can be only
manipulated using a special tool like JDK keytool or openssl (in case of PKCS12 format).
This format is great if trust store should be in a single file or when compatibility with other
Java solutions or older UNICORE releases is desired.

• OpenSSL trust store - allows to use a directory with CA certificates stored in PEM format,
under precisely defined names: the CA certificates, CRLs, signing policy files and names-
paces files are named <hash>.0, <hash>.r0, <hash>.signing_policy and <hash>.namespaces.
Hash is the old hash of the trusted CA certificate subject name (in Openssl version > 1.0.0
use -suject_hash_old switch to generate it). If multiple certificates have the same hash then
the default zero number must be increased. This format is the same as used by other then
UNICORE popular middlewares as Globus and gLite. It is suggested when a common trust
store with such middlewares is needed.



UNICORE Gateway 12

• Directory trust store - the most flexible and convenient option, suggested for all remaining
cases. It allows to use a list of wildcard expressions, concrete paths of files or even URLs to
remote files as a set of trusted CAs and in the same way for the CRLs. With this trust store
administrator can simply configure all files (or all with a specified extension) in a directory to
be used as a trusted certificates.

In all cases trust stores can be (and by default are) configured to be automatically refreshed.

Property name Type Default
value /
mandatory

Description

gateway.
truststore.
allowProxy

[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

gateway.
truststore.type

[keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

gateway.
truststore.
updateInterval

integer number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---
gateway.
truststore.
directoryConnect
ionTimeout

integer number 15 Connection timeout for
fetching the remote CA
certificates in seconds.

gateway.
truststore.
directoryDiskCac
hePath

filesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

gateway.
truststore.direc
toryEncoding

[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER.



UNICORE Gateway 13

Property name Type Default
value /
mandatory

Description

gateway.
truststore.direc
toryLocations.*

list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
gateway.
truststore.
keystoreFormat

string - The keystore type (jks,
pkcs12) in case of truststore
of keystore type.

gateway.
truststore.
keystorePassword

string - The password of the
keystore type truststore.

gateway.
truststore.
keystorePath

string - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---
gateway.
truststore.opens
slNewStoreFormat

[true, false] false In case of openssl
truststore, specifies whether
the trust store is in openssl
1.0.0+ format (true) or
older openssl 0.x format
(false)

gateway.
truststore.
opensslNsMode

[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDPM
A_GLOBUS

In case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).



UNICORE Gateway 14

Property name Type Default
value /
mandatory

Description

gateway.
truststore.
opensslPath

filesystem path /etc/
grid-sec
urity/
certific
ates

Directory to be used for
opeenssl truststore.

--- Revocation settings ---
gateway.
truststore.crlCo
nnectionTimeout

integer number 15 Connection timeout for
fetching the remote CRLs
in seconds (not used for
Openssl truststores).

gateway.
truststore.
crlDiskCachePath

filesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

gateway.
truststore.
crlLocations.*

list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

gateway.
truststore.
crlMode

[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

gateway.
truststore.crlUp
dateInterval

integer number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

gateway.
truststore.
ocspCacheTtl

integer number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)



UNICORE Gateway 15

Property name Type Default
value /
mandatory

Description

gateway.
truststore.
ocspDiskCache

filesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

gateway.
truststore.ocspL
ocalResponders.
<NUMBER>

list of
properties with
a common
prefix

- Optional list of local OCSP
responders

gateway.
truststore.
ocspMode

[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAIL
ABLE

General OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

gateway.
truststore.
ocspTimeout

integer number 10000 Timeout for OCSP
connections in miliseconds.

gateway.
truststore.
revocationOrder

[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

gateway.
truststore.
revocationUseAll

[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Directory trust store, with a minimal set of options:

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.crlLocations=/trust/dir/*.crl

Directory trust store, with a complete set of options:



UNICORE Gateway 16

truststore.type=directory
truststore.allowProxy=DENY
truststore.updateInterval=1234
truststore.directoryLocations.1=/trust/dir/*.pem
truststore.directoryLocations.2=http://caserver/ca.pem
truststore.directoryEncoding=PEM
truststore.directoryConnectionTimeout=100
truststore.directoryDiskCachePath=/tmp
truststore.crlLocations.1=/trust/dir/*.crl
truststore.crlLocations.2=http://caserver/crl.pem
truststore.crlUpdateInterval=400
truststore.crlMode=REQUIRE
truststore.crlConnectionTimeout=200
truststore.crlDiskCachePath=/tmp

Openssl trust store:

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.allowProxy=ALLOW
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=src/test/resources/certs/truststore. ←↩

jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

4.5.2 Configuring the credential

UNICORE uses private key and a corresponding certificate (called together as a credential) to
identify users and servers. Credentials might be provided in several formats:

• Credential can be obtained from a keystore file, encoded in JKS or PKCS12 format.

• Credential can be loaded as a pair of PEM files (one with private key and another with certifi-
cate),

• or from a pair of DER files,

• or even from a single file, with PEM-encoded certificates and private key (in any order).



UNICORE Gateway 17

The following table list all parameters which allows for configuring the credential. Note that
nearly all options are optional. If not defined, the format is tried to be guessed. However some
credential formats require additional settings. For instance if using der format the keyPath is
mandatory as you need two DER files: one with certificate and one with the key (and the latter
can not be guessed).

Property name Type Default
value /
mandatory

Description

gateway.
credential.path

filesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

gateway.
credential.
format

[jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

gateway.
credential.
password

string - Password required to load
the credential.

gateway.
credential.
keyPath

string - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

gateway.
credential.
keyPassword

string - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

gateway.
credential.
keyAlias

string - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.



UNICORE Gateway 18

Examples

Note
Various UNICORE modules use different property prefixes. Here we don’t put any, but in
practice you have to use the prefix (see the reference table above for the actual prefix). Also
properties might need to be provided using different syntax, as XML.

Credential as a pair of DER files:

credential.format=der
credential.password=the\!njs
credential.path=/etc/credentials/cert-1.der
credential.keyPath=/etc/credentials/pk-1.der

Credential as a JKS file (credential type can be autodetected in almost every case):

credential.path=/etc/credentials/server1.jks
credential.password=xxxxxx

4.5.3 Proxy certificate support

The UNICORE gateway optionally accepts proxy certificates as used by other Grid middleware
systems. In general, we think proxies are a bad idea, but for interoperability purposes, proxies
support can be enabled. If enabled, the clients using proxies are authenticated as the initial
issuer of the presented proxy certificates chain. See the above reference properties table for the
actual setting.

4.6 Logging

UNICORE uses the Log4j logging framework. It is configured using a config file. By default,
this file is found in components configuration directory and is named logging.propert
ies. The config file is specified with a Java property log4j.configuration (which is set
in startup script).

Several libraries used by UNICORE also use the Java utils logging facility (the output is two-
lines per log entry). For convenience its configuration is also controlled in the same logging.
properties file and is directed to the same destination as the main Log4j output.

Note
You can change the logging configuration at runtime by editing the logging.properties file. The
new configuration will take effect a few seconds after the file has been modified.



UNICORE Gateway 19

By default, log files are written to the the LOGS directory.

The following example config file configures logging so that log files are rotated daily.

# Set root logger level to INFO and its only appender to A1.
log4j.rootLogger=INFO, A1

# A1 is set to be a rolling file appender with default params
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=logs/uas.log

#configure daily rollover: once per day the uas.log will be copied
#to a file named e.g. uas.log.2008-12-24
log4j.appender.A1.DatePattern=’.’yyyy-MM-dd

# A1 uses the PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩

%m%n

Note
In Log4j, the log rotation frequency is controlled by the DatePattern. Check
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
for the details.

For more info on controlling the logging we refer to the log4j documentation:

• PatternLayout

• RollingFileAppender

• DailyRollingFileAppender

Log4j supports a very wide range of logging options, such as date based or size based file
rollover, logging different things to different files and much more. For full information on
Log4j we refer to the publicly available documentation, for example the Log4j manual.

4.6.1 Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. "unicore.security") to
which the Java class name is appended. For example, the XUUDB connector in UNICORE/X
logs to the "unicore.security.XUUDBAuthoriser" logger.

Therefore the logging output produced can be controlled in a fine-grained manner. Log levels
in Log4j are (in increasing level of severity):

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/manual.html


UNICORE Gateway 20

# TRACE on this level huge pieces of unprocessed information are dumped, # DEBUG on this
level UNICORE logs (hopefully) admin-friendly, verbose information, useful for hunting prob-
lems, # INFO standard information, not much output, # WARN warnings are logged when some-
thing went wrong (so it should be investigated), but recovery was possible, # ERROR something
went wrong and operation probably failed, # FATAL something went really wrong - this is used
very rarely for critical situations like server failure.

For example, to debug a security problem in the UNICORE security layer, you can set:

log4j.logger.unicore.security=DEBUG

If you are just interested in details of credentials handling, but not everything related to security
you can use the following:

log4j.logger.unicore.security=INFO
log4j.logger.unicore.security.CredentialProperties=DEBUG

so the XUUDBAuthoriser will log on DEBUG level, while the other security components log
on INFO level.

Note
(so the full category is printed) and turn on the general DEBUG logging for a while (on uni-
core). Then interesting events can be seen and subsequently the logging configuration can
be fine tuned to only show them.

The most important, root log categories used by the Gateway’s logging are:

unicore.gateway General gateway logging
unicore.connections Log IPs of clients, and the DN after the

SSL handshake
unicore.httpserver HTTP processing, Jetty server
unicore.security Certificate details and other security

The Gateway uses the so called MDC (Mapped Diagnostic Context) to provide additional
information on the client which is served. In the MDC the client’s IP address and client’s
Distinguished Name is stored. You can control whether to attach MDC to each line by the
%X{entry} log4j pattern entry. As the entry you can use: clientIP or clientName.
For example:

log4j.appender.A1.layout.ConversionPattern=%d [%t] [%X{clientIP} %X ←↩
{clientName}] %-5p %c{1} - %m%n



UNICORE Gateway 21

5 Using Apache httpd as a frontend

You may wish to use the Apache webserver (httpd) as a frontent for the gateway (e.g. for
security or fault-tolerance reasons).

Requirements

• Apache httpd

• mod_proxy for Apache httpd

External references

• https://wiki.eclipse.org/Jetty/Howto/Configure_mod_proxy

6 Using the Gateway for failover and/or loadbalancing of UNI-
CORE sites

The Gateway can be used as a simple failover solution and/or loadbalancer to achieve high
availability and/or higher scalability of UNICORE/X sites without additional tools.

A site definition (in CONF/connections.properties) can be extended, so that multiple
physical servers are used for a single virtual site.

An example for such a so-called multi-site declaration in the connections.properties file looks
as follows:

#declare a multisite with two physical servers

MYSITE=multisite:vsites=https://localhost:7788 https://localhost ←↩
:7789

This will tell the gateway that the virtual site "MYSITE" is indeed a multi-site with the two
given physical sites.

6.1 Configuration

Configuration options for the multi-site can be passed in two ways. On the one hand they can
go into the connections.properties file, by putting them in the multi-site definition, separated by
";" characters:

#declare a multisite with parameters

MYSITE=multisite:param1=value1;param2=value2;param3=value3;...

The following general parameters exist

https://wiki.eclipse.org/Jetty/Howto/Configure_mod_proxy


UNICORE Gateway 22

vsites List of physical sites
strategy Class name of the site selection strategy to

use (see below)
config Name of a file containing additional

parameters

Using the "config" option, all the parameters can be placed in a separate file for enhanced
readability. For example you could define in connections.properties:

#declare a multisite with parameters read from a separate file

MYSITE=multisite:config=conf/mysite-cluster.properties

and give the details in the file "conf/mysite-cluster.properties":

#example multisite configuration
vsites=https://localhost:7788 https://localhost:7789

#check site health at most every 5 seconds
strategy.healthcheck.interval=5000

6.2 Available Strategies

A selection strategy is used to decide where a client request will be routed. By default, the
strategy is "Primary with fallback", i.e. the request will go to the first site if it is available,
otherwise it will go to the second site.

Primary with fallback

This strategy is suitable for a high-availability scenario, where a secondary site takes over the
work in case the primary one goes down for maintenance or due to a problem. This is the
default strategy, so nothing needs to be configured to enable it. If you want to explicitely enable
it anyway, set

strategy=primaryWithFallback

The strategy will select from the first two defined physical sites. The first, primary one will
be used if it is available, else the second one. Health check is done on each request, but not
more frequently as specified by the "strategy.healthcheck.interval" parameter. By default, this
parameter is set to 5000 milliseconds.

Changes to the site health will be logged at "INFO" level, so you can see when the sites go up
or down.

Round robin

This strategy is suitable for a load-balancing scenario, where a random site will be chosen from
the available ones. To enable it, set



UNICORE Gateway 23

strategy=roundRobin

Changes to the site health will be logged at "INFO" level, so you can see when the sites go up
or down.

It is very important to be aware that this strategy requires that all backend sites used in the pool,
share a common persistence. It is because Gateway does not track clients, so particular client
requests may land at different sites. This is typically solved by using a non-default, shared
database for sites, such as MySQL.

Note
Currently loadbalancing of target sites is an experimental feature and is not yet fully functional.
It will be improved in future UNICORE versions.

Custom strategy

You can implement and use your own failover strategy, in this case, use the name of the Java
class as strategy name:

strategy=your_class_name

7 Gateway failover and migration

The Section 6 covered usage of the Gateway to provide failover of backend services. However
it may be needed to guarantee high-availabilty for the Gateway itself or to move it to other
machine in case of the original one’s failure.

7.1 Gateway’s migration

The Gateway does not store any state information, therefore its migration is easy. It is enough
to install the Gateway at the target machine (or even to simply copy it in the case of installation
from the core server bundle) and to make sure that the original Gateway’s configuration is
preserved.

If the new machine uses a different address, it needs to be reflected in the server’s configuration
file (the listen address). Also, the configuration of sites behind the gateway must be updated
accordingly.

7.2 Failover and loadbalancing of the Gateway

Gateway itself doesn’t provide any features related to its own redundancy. However as it is
stateless, the standard redundancy solutions can be used.



UNICORE Gateway 24

The simpliest solution is to use Round Robin DNS, where DNS server routes the Gateway’s
DNS address to a pool of real IP addresses. While easy to set up this solution has a significant
drawback: DNS server doesn’t care about machines being down.

The much better choice is to use the Linux-HA software suite, often known under the name of
its principal component, the heartbeat. For details see http://www.linux-ha.org

Additionally a more advanced HTTP-aware software can be used, such as HA-Proxy (http://haproxy.1wt.eu).
Currently Gateway and UNICORE don’t maintain HTTP sessions so usage of the HTTP-aware
load-balancer is not strictly required, but such solutions generally provide more general purpose
features.

8 Building the Gateway from source

To checkout the latest version of the Gateway source code, do

svn co http://unicore.svn.sourceforge.net/svnroot/unicore/gateway/ ←↩
trunk gateway

You will need to install Maven from http://maven.apache.org Compile using

mvn install

Compiles the code and runs the tests.

The file "README-building.txt" contains instructions for building distributable packages.

http://www.linux-ha.org
http://haproxy.1wt.eu
http://maven.apache.org

	Introduction
	Installation
	Installation from the core server bundle
	Installation from a Linux package (rpm or deb)

	Upgrading
	Configuration
	Java and environment settings: startup.properties
	Configuring sites: connections.properties
	Main server settings: gateway.properties
	Certificate-less end-user access
	security.properties
	Logging

	Using Apache httpd as a frontend
	Using the Gateway for failover and/or loadbalancing of UNICORE sites
	Configuration
	Available Strategies

	Gateway failover and migration
	Gateway's migration
	Failover and loadbalancing of the Gateway

	Building the Gateway from source

