
RUS Accounting for UNICORE

RUS ACCOUNTING FOR UNICORE

Marcin Lewandowski, Krzysztof Benedyczak

Document Version: 1.1.0
Component Version: 2.0.0
Date: 20 05 2013



RUS Accounting for UNICORE

Contents

1 Introduction 1

1.1 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Compatibility 4

2.1 rus-service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 rus-job-processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 rus-usage-logger-feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 rus-ucc-plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 rus-bss-adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 JMS Notes 5

4 Installation and basic configuration 5

4.1 Directory layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 Deployment planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 ActiveMQ Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Configuration of the rus-service 8

5.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5.2 Configuration options reference . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3 Configuring rus-service export plugins . . . . . . . . . . . . . . . . . . . . . . 16

5.4 Configuring rus-service reporting . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.5 Configuring rus-export-car . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.6 Accessing the rus-service with UCC . . . . . . . . . . . . . . . . . . . . . . . 25

5.7 Records contents and merging . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 rus-job-processor 30

7 rus-bssadapter 32

8 Installation of rus-site 35



RUS Accounting for UNICORE

9 Usage Logger Feeder 38

10 Troubleshooting 39

10.1 Common problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.2 rus-service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10.3 rus-job-processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.4 rus-bss-adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.5 rus-usage-logger-feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.6 rus-ucc-client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.7 rus-export-bat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 Changes 43

11.1 rus-ucc-plugin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11.2 rus-service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.3 rus-bss-adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11.4 rus-export-bat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

11.5 rus-job-processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

11.6 rus-web-ui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

11.7 rus-usage-logger-feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



RUS Accounting for UNICORE 1

This is a RUS Accounting user manual providing information on running and using the account-
ing for UNICORE.

1 Introduction

This user manual covers UNICORE accounting system developed in ICM. The system is using
JMS messaging as its internal transport layer and the OGF Usage Record (UR) specification as
a data representation format.

Data about jobs is collected from a grid component (XNJS, which is a part of Unicore/X server)
and from a batch system server (BSS). These pieces of information are merged together to form
a full job record.

Please note that this accounting system is designed for production installations. Therefore it is
fairly useless if you don’t use a real BSS, but a Java or NOBATCH TSI.

The main modules of the system are:

• rus-job-processor - UNICORE job processor which allows for collecting grid-level infor-
mation about jobs, converting it into UsageRecord format and sending via JMS to consumers
(usually the rus-service).

• rus-bssadapter - a standalone daemon which is installed on a Batch System (or LRMS)
server. Usually this is the same machine where UNICORE TSI runs. It monitors accounting
logs of the BSS and forwards the collected data via JMS to consumers (usually the rus-
service). Currently Torque, SLURM and Oracle/Sun GridEngine are supported.

• rus-service - Implementation of the main accounting service. It maintains a database of usage
records and provides a Web Service management interface, based on OGF Resource Usage
Service (RUS) draft specification. The rus-service is a consumer of records provided by the
rus-job-processor and rus-bssadapter and merges them. The rus-service is distributed in two
variants: as a standalone, ready to be used server and as a small bundle which can be added
to an existing UNICORE container. Choose the one which suits your needs.

• rus-export-bat - it is a plugin for the rus-service. It allows for exporting UR records via JMS,
using PL-Grid BAT format, to external consumers. PL-Grid BAT format, which in used in
Polish NGI is a proprietary format and is rather unusable anywhere else. Note that PL-Grid
version of BAT is a highly modified version of the original BAT system developed in the
BalticGrid project.

• rus-export-apel - it is a plugin for the rus-service. It allows for exporting AUR records via
Stomp to APEL. ( https://wiki.egi.eu/wiki/APEL )

• rus-ucc-plugin - UCC client plugin for querying the rus-service. It is mostly useful for
administrators to check the database contents and to perform some maintenance actions, e.g.
to force execution of configured export plugins.

https://wiki.egi.eu/wiki/APEL


RUS Accounting for UNICORE 2

• rus-webui - (formerly: ur-site) web portal which allows for accounting data presentation.
It provides a summaries, individual records and graphs presentation of the data with a vast
amount of selection criteria and presentation modes.

• rus-usage-logger-feeder - it is a small additional utility, useful for administrators. Its func-
tion is to generate accounting records basing on an archival accounting data from Unicore/X
usage log file(s). The generated accounting records are subsequently sent to the consumers
via JMS (usually to the rus-service). The tool is especially useful when the accounting system
is installed on a system which was already working for some time (and historical accounting
data should be collected) or in case of long-lasting system failures (e.g. when the rus-job-
processor can not send records to the JMS broker and drops some of them).

Additionally the ActiveMQ JMS broker must be installed, however this component is a generic,
3rd party server and it is not a part of the UNICORE RUS Accounting System distribution.



RUS Accounting for UNICORE 3

Accounting architecture: dotted lines: JMS communication, solid lines: inter-component com-
munication.

1.1 Data model

The RUS accounting system collects information about individual jobs and stores it in the
database. At the same time the daily summaries are stored in the database, using the infor-
mation from the completed records.

The jobs table, providing the accurate and detailed information can quickly grow to an insane
size. Therefore the records from this table are automatically moved to a historical table, after a



RUS Accounting for UNICORE 4

configurable period of time (e.g. 6 months). The historical table is not used by the system and
its size does not influence the performance.

The aggregated reporting table holds only a subset of information of the summed amount of
resources consumed by jobs performed on a particular site, by a particular user per day (to be
precise: there are also other grouping variables). This table is subject to the same process of
moving records to the historical table as we have in the case of individual jobs table. However
as reporting table grows much slower then the jobs table, this operation can be done after a
much longer period of time (e.g. 3 years).

The accounting system, since the 2.0 version uses the reporting data whenever possible, as its
analyzes is significantly faster and at the same it provides majority of the data interesting for
the stakeholders.

It is important to know that there are some (minor) limitations of the reporting data:

• The reporting table is using the start and end times of the job on an execution system to assign
it to a particular day. Job submit/creation/queuing times are neither used nor visible. If a job
spans several days, its resources consumption is distributed proportionally.

• Only the information about the already completed jobs is visible, jobs in progress are available
only in the individual jobs table.

• Some failed or aborted jobs can be not included in reporting data, in particular those jobs
which were aborted or failed before reaching the execution. This is by design, as such jobs
have no start/end time which is used to assign a job to a proper reporting day. In future this
limitation can be improved.

2 Compatibility

2.1 rus-service

Version 1.2.0 introduced new architecture so you can’t use rus-service in version earlier than
1.2.0 with other components in version 1.2.0+.

If installing into an existing UNICORE service, as an add-on:

For UNICORE 6.4.x use rus-service 1.5.0

For UNICORE 6.5.0 use rus-service 1.6.0

2.2 rus-job-processor

For UNICORE 6.3 use rus-job-processor in version 1.2.0

For UNICORE 6.4 use rus-job-processor in version 1.3.0+.

UNICORE 6.5 has rus-job-processor installed (version 1.5.0+)



RUS Accounting for UNICORE 5

2.3 rus-usage-logger-feeder

If you want to use rus-usage-logger-feeder you need to have logs generated by Unicore 6.4.0+.
Due to bug in Unicore/X 6.4.0 you can’t collect information about user’s VOs. This problem
was fixed in Unicore 6.4.1.

Logs from earlier versions of UNICORE will be also correctly parsed, but they don’t contain
any useful information (we have information about a job, but we can’t connect that information
with its corresponding part from rus-bss-adapter).

2.4 rus-ucc-plugin

For UCC 6.5.0 use rus-ucc-plugin version 1.5.1

For UCC 6.4.2 use rus-ucc plugin version 1.5.0

2.5 rus-bss-adapter

We currently provide support for Torque and Sun Grid Engine. In order to choose BSS en-
gine alter rus.service.engine property in ${bss-adapter}/conf/rus_bssada
pter.conf

3 JMS Notes

The accounting system is JMS based. It is good to be aware about the possible advanced settings
like socket timeouts or low level logging. This can be achieved using the advanced settings of
ActiveMQ clients which are used by the solution. The documentation is available available
on ActiveMQ web pages. In particular the configuration of the popular TCP transport is here:
http://activemq.apache.org/tcp-transport-reference.html

Note
Socket timeouts should be chosen with care. For instance too large values may significantly
slow down export of records to external systems when even one of the receiving brokers
is down. On the other hand too low values may cause problems in case of bad network
conditions.

4 Installation and basic configuration

4.1 Directory layout

Currently the RUS accounting system is available only as a packed tar.gz archive. However
it can be deployed on UNICORE installed both form the quickstart bundle (tar.gz or zip) and

http://activemq.apache.org/tcp-transport-reference.html


RUS Accounting for UNICORE 6

from the RPM package. The following table summarizes locations of important files, which are
dependent on the UNICORE installation method.

Name in this
manual

tar.gz,zip rpm Description

CONF <basedir>/conf/ /etc/unicore/unicorexUNICORE/X
config files

LIB <basedir>/lib/ /usr/share/unicore/unicorex/libUNICORE/X
Java libraries

LIB2 <basedir>/lib2/ /usr/share/unicore/unicorex/lib2RUS
Accounting
extra java
libraries

LOG <basedir>/logs/ /var/log/unicore/unicorex/UNICORE/X
log files

BIN <basedir>/bin/ /usr/sbin/ start/stop
scripts

4.2 Deployment planning

rus-job-processor is installed on each Unicore/X server which accepts user jobs. Similarly rus-
bssadapter should be installed on a machine executing the jobs, i.e. the BSS server (usually
the same where TSI is installed).

Location of the rus-service is up to the administrator. It can be deployed into the same Uni-
core/X server where the rus-job-processor is installed or even to a UNICORE server with
other services like Registry. However a good practice is to deploy it on a separate UNICORE
container. Such deployment introduces an increased maintenance effort as an additional server
must be run, but allows for a better stability, ensures that problems in the rus-service won’t
influence a crucial Unicore/X server and splits the load.

Resource requirements of the rus-service are rather low. Tests have shown that on a commod-
ity hardware, a database containing 1,000,000 of entries (jobs) behaves correctly and doesn’t
overload the machine. Around 2,000,000 of entries the commodity server can start to have prob-
lems. Note, however, that rus-service provides mechanism to solve this problem automatically
by rolling older records - see the configuration section.

The client side, rus-webui and rus-ucc-plugin can be left as the last components (both are fully
optional). The UCC plugin can be installed with any UCC installation, assuming the version
matches (see the Compatibility section).

Installation should be started from deploying the ActiveMQ broker. Then the rus-service should
be deployed. Finally all other components can be installed. Such installation order ensures that
each installed component can be started and at least minimally tested without waiting for an
installation of other components.



RUS Accounting for UNICORE 7

4.3 ActiveMQ Broker

The central point of data exchange is ActiveMQ broker. You can just download and extract it
from ActiveMQ official web site. There is no need to perform any extra configuration. However
you can add distinct users with privileges to write and read from queues.

Example:

Let’s suppose that we have the following installation:

• host grid_bss has installed Torque + bss-adapter.

• host grid_service has rus-service installed.

• host grid_processor has rus-job-processor installed.

We need one queue. Both grid_bss and grid_process will be producers, hence they need write
access to queue. grid_service will be consumer.

<simpleAuthenticationPlugin>
<users>
<authenticationUser username="acct_bss" password=" ←↩

acct_bss_jms"
groups="grid_producer,global"/>

<authenticationUser username="acct_service" password=" ←↩
acct_service_jms"

groups="grid_consumer,global"/>
<authenticationUser username="acct_processor" password=" ←↩

acct_processor_jms"
groups="grid_producer,global"/>

</users>
</simpleAuthenticationPlugin>

And we configure queue access:

<authorizationPlugin>
<map>

<authorizationMap>
<authorizationEntries>

...
<authorizationEntry queue="chunks" read="admins, ←↩

grid_consumer" write="admins,grid_producer" />
...

</authorizationEntries>
</authorizationMap>

</map>
</authorizationPlugin>



RUS Accounting for UNICORE 8

We use following credentials:

• on rus-bss-adapter: acct_bss/acct_bss_jms

• on rus-service: acct_service/acct_service_jms

• on rus-job-processor: acct_processor/acct_processor_jms

Of course it is also possible to set up SSL for the JMS messaging layer - see ActiveMQ docu-
mentation for details.

5 Configuration of the rus-service

In this section the rus-service is described in more details. RUS-service collects and stores ac-
counting data - it is the heart of the whole system. RUS-service may also export accounting data
to external systems, it can be used in a hierarchy and also can produce summary or aggregated
reports.

5.1 Installation

You should follow one of the instructions below to install a standalone rus-service instance or
to add it to an existing UNICORE server.

The 2.0.x version of the RUS service was tested on the 6.6.0 release of the base UNICORE
distribution. Any other 6.6.x release should be equally fine. When installing into the existing
container or when referring to the documentation of the base UNICORE container it is sug-
gested to use this version.

5.1.1 rus-service - dedicated server instance

Note
Previously there was a dedicated tar.gz package, similar to the UNICORE quickstart package.
This is not provided anymore and was replaced by the RPM version.

The easiest way to install the standalone version is to use the provided RPM package: unicore-
rus-service. It is enough to download the package and install it normally using the rpm -i
<rpmfilename> command.

You have to configure keystore/truststore (for instructions please refer to the UNICORE docu-
mentation of any UNICORE distribution as Unicore/X - the container’s options are the same)
Then go to point 6. under <<rus-service - installing into existing server>, which describes how
to configure the rus-service.



RUS Accounting for UNICORE 9

Note
The dedicated rus-service server instance by default requires the working installation of the
UNICORE Gateway (it is not included in the package). You can use a Gateway from another
installation or reconfigure the UNICORE container hosting the RUS service not to use the
Gateway (what is usually not suggested). Follow the standard UNICORE procedure to add a
site to the Gateway.

5.1.2 rus-service - installing into existing server

The following instruction is valid for installation of tar.gz bundle into an existing UNICORE
container e.g. UNICORE Registry or UNICORE/X server.

1. Install rus-service libraries into the server. The simplest way to achieve it is to copy the
contents of distribution’s ${LIB} directory.

However a good practice is to keep extensions’ libraries in a separate directory. This
involves bit more work: (a) create a new directory ${LIB2}, (b) copy the contents of
distribution’s lib/ directory into ${LIB2}, (c) modify ${BIN}/start.sh to scan
also ${LIB2} directory for libraries. To do so, after this line:

...
CP=.$(find "${LIB}" -name *.jar -exec printf ":{}" \;)
...

add an additional instruction, to load libraries from ${LIB2} too (which must be defined
first), as follows:

...
LIB2="your extra jars path"
CP=.$(find "${LIB}" -name *.jar -exec printf ":{}" \;)
CP=${CP}:$(find "${LIB2}" -name *.jar -exec printf ":{}" ←↩

\;)
...

${LIB2} variable can be alternatively defined in ${CONF}/startup.properties.

2. Add RUS services to ${CONF}/wsrflife.xml.

<service name="RUS" wsrf="false" persistent="false">
<interface class="pl.edu.icm.unicore.accounting.types. ←↩

ws.ResourceUsagePortType" />
<implementation class="pl.edu.icm.unicore.accounting. ←↩

service.ws.ResourceUsageServiceImpl" />
</service>



RUS Accounting for UNICORE 10

<service name="PluginsExecutor" wsrf="false" persistent ←↩
="false">

<interface class="pl.edu.icm.unicore.accounting. ←↩
pluginexecutor.service.PluginExecutorPortType" />

<implementation class="pl.edu.icm.unicore.accounting. ←↩
service.ws.PluginExecutorServiceImpl" />

</service>

3. Copy the contents of the distribution’s conf/ directory (i.e. the rus/ directory which
can be found there) to the directory ${CONF}.

4. Increase available memory in Unicore/X to at least 160MB. This setting is available in
${BIN}/start.sh

# Memory for the VM
MEM=-Xmx128m

5. Configure ActiveMQ Broker properties in ${CONF}/rus/service.properties.
Additionally you can configure database properties in this file.

6. Configure authorization of the RUS service.
Authorization is used for the rus-ucc-client, which allows users to query for records,
based on a given criteria. If you intend to only allow users with role admin to use the
service (what is a safe bet) you can skip this point. If you prefer to customize autho-
rization of the RUS service access, you have two options prepared: to use a role based
authorization or to use a DN-based authorization. Of course you can invent your own
authorization scheme e.g. based on VO membership or other attributes. Provided exam-
ple is configured to use the role based access, there is also a commented version for the
DN-based authorization. Copy doc/19rus-xacml2-policy.xml into ${CONF}/
xacml2Policies directory. Review copied file and alter configuration to satisfy your
requirements.

7. If you are installing rus-service to a UNICORE server installed from RPM/deb there are
additional required steps.

• define property for config location in ${CONF}/wsrflite.xml. We refer to as-
signed value as ${RUSCONF}

<property name="rus.accounting.config" value="/etc/ ←↩
unicore/unicorex/rus/service.properties" />

• edit ${RUSCONF}/service.properties, update database url if you are using
H2 and configuration file paths:

accounting.db.jdbcUrl=jdbc:h2:/var/lib/unicore/ ←↩
unicorex/RUS



RUS Accounting for UNICORE 11

accounting.exportersConfigurationFile=/etc/unicore/ ←↩
unicorex/rus/rus_extensions.xml

accounting.reportingConfigurationFile=/etc/unicore/ ←↩
unicorex/rus/reporting.xml

8. Restart Unicore/X.

9. Verify your installation. Logs should contain:

2011-07-30 01:43:08,252 [main] INFO ServiceConfigReader ←↩
- Running startup class <pl.edu.icm.unicore. ←↩

accounting.service.Bootstrap>
...
2011-07-30 01:48:58,882 [main] INFO DefaultRUSManager ←↩

- Using </etc/unicore/unicorex/rus/> as RUS ←↩
configuration directory

2011-07-30 01:49:00,352 [main] INFO DefaultRUSManager ←↩
- RUS JOB consumer starting...

2011-07-30 01:49:00,366 [main] INFO JMSFactory - Using ←↩
JMS server: tcp://192.168.87.100:61616 queue: ←↩
grid10

2011-07-30 01:49:00,416 [main] DEBUG JMSParticipant - ←↩
Using credentials: username[system], password ←↩
[******]

2011-07-30 01:49:00,427 [main] INFO JMSParticipant - ←↩
RUS JMS Consumer started

2011-07-30 01:49:00,444 [JMS Consumer Timer] INFO ←↩
JMSParticipant - Connecting to jms: tcp ←↩
://192.168.87.100:61616, queue name = grid10, ←↩
username: system

2011-07-30 01:49:00,450 [RUS-Executor] INFO ←↩
NotificationExecutor - RUS Notification Executor ←↩
started

Logging
In order to increase an amount of a logged information add the following line to the ${CO
NF}/logging.properties:

log4j.logger.pl.edu.icm.unicore.accounting=DEBUG



RUS Accounting for UNICORE 12

Using MySQL instead of H2.
There’s possibility to use MySQL as a storage instead of H2 (which is the default setting). In
order to change the underlying DBMS:
Verify connection properties in: ${CONF}/rus/service.properties. Comment
lines related to H2 and uncomment the MySQL section.
Create an empty database, grant privilidges to user on created table and enter credentials to
${CONF}/rus/service.properties.
Example DDL:

CREATE USER ’accounting’@’%’ IDENTIFIED BY ’accounting_dba ←↩
’;

GRANT USAGE ON * . * TO ’accounting’@’%’ IDENTIFIED BY ’ ←↩
accounting_dba’ WITH MAX_QUERIES_PER_HOUR 0 ←↩
MAX_CONNECTIONS_PER_HOUR 0 MAX_UPDATES_PER_HOUR 0 ←↩
MAX_USER_CONNECTIONS 0 ;

CREATE DATABASE IF NOT EXISTS ‘accounting‘ ;
GRANT ALL PRIVILEGES ON ‘accounting‘ . * TO ’accounting’@ ←↩

’%’;

Note
When you install rus-service into UNICORE Registry server, some of the libraries (available
for the Unicore/X) might be missing. For example: spring-core-3.0.5.RELEASE.jar and spring-
expression-3.0.5.RELEASE.jar. Copy those jars from Unicore/X lib folder into UNICORE Reg-
istry lib folder.

5.2 Configuration options reference

The following options can be specified in the rus/rus.service configuration file:

Property name Type Default
value /
mandatory

Description

accounting.
exportersConfigu
rationFile

string conf/
rus/
rus_exte
nsions.
xml

Location of the file with the
definitions of plugins used
for exporting job records to
external services.



RUS Accounting for UNICORE 13

Property name Type Default
value /
mandatory

Description

accounting.
factor.[.*]

string can have
subkeys

- Can be used to provide
centralized CPU time
normalization settings.
.metric defines metric,
.SITE.default defines value
for a SITE,
.SITE.host[xx-yy] defines
value for SITE’s host range.

accounting.jms.
[.*]

string can have
subkeys

- JMS properties are
specified under this prefix.
See the separate
documentation.

accounting.
reportingConfigu
rationFile

string conf/
rus/repo
rting.
xml

Location of a file with
definitions of plugins used
for creating and possibly
exporting reports on
resource usage.

--- Database ---
accounting.db.
dialect

[h2, mysql] h2 Database SQL dialect.
Must match the selected
driver, however sometimes
more then one driver can be
available for a dialect.

accounting.db.
driver

Class extending
java.sql.Driver

org.h2.
Driver

Database driver class name.
This property is optional -
if not set, then a default
driver for the chosen
database type is used.

accounting.db.
jdbcUrl

string jdbc:h2:
data/RUS

Database JDBC URL.

accounting.db.
password

string empty
string

Database password.

accounting.db.
username

string sa Database username.

--- Export executor ---
accounting.
executor.
maxFails

integer >= 1 25000 Defines after how many
tries a notification should
be finally dropped.



RUS Accounting for UNICORE 14

Property name Type Default
value /
mandatory

Description

accounting.
executor.notifyS
topThreshold

integer number 3 If that many notifications
for a particular export
plugin fail in one round,
then further notifications
for this plugin are skipped.
Set to negative value to
disable this feature.

accounting.
executor.resched
uleInitial

integer >= 1 10 How long (in s) to wait
before retrying to send a
notification.

accounting.
executor.
rescheduleMax

integer >= 1 3600 Defines the maximum retry
time (in s) between retrying
a failed notification.

accounting.
executor.resched
uleMultiplier

integer >= 1 2 Defines how much the retry
wait time should be
multiplied, after each
subsequent failure.

accounting.
executor.
sleepTime

integer >= 1 500 Sleep time (in ms) after one
round of notification
handling.

--- Old data maintenance ---
accounting.
rolling.
recordOlderThen

string 12m Defines how old job records
should be moved to history.
Leave unset to disable this
feature. Values must be
positive integers with one
of the prefixes: y, m, d, h, s
respectively for: years,
months, days, hours or
seconds.

accounting.
rolling.
recordSchedule

string 0 35 4 *
* ?

Cron expression defining
when the records rolling
should be performed. See
http://quartz-scheduler.org/-
documentation/quartz-2.x/-
tutorials/tutorial-lesson-06
for details.The basic format
is: <sec> <min> <h>
<dayofMonth> <month>
<dayOfWeek> [year] and *
is used for any value and ?
for no specific value.

http://quartz-scheduler.org/documentation/quartz-2.x/tutorials/tutorial-lesson-06
http://quartz-scheduler.org/documentation/quartz-2.x/tutorials/tutorial-lesson-06
http://quartz-scheduler.org/documentation/quartz-2.x/tutorials/tutorial-lesson-06


RUS Accounting for UNICORE 15

Property name Type Default
value /
mandatory

Description

accounting.
rolling.reportin
gOlderThen

string - Defines how old reports
should be moved to history.
Leave unset to disable this
feature. Values must be
positive integers with one
of the prefixes: y, m, d, h, s
respectively for: years,
months, days, hours or
seconds.

accounting.
rolling.reportin
gSchedule

string 0 5 4 *
* ?

Cron expression defining
when the reports rolling
should be performed. See
http://quartz-scheduler.org/-
documentation/quartz-2.x/-
tutorials/tutorial-lesson-06
for details.The basic format
is: <sec> <min> <h>
<dayofMonth> <month>
<dayOfWeek> [year] and *
is used for any value and ?
for no specific value.

The JMS options are as follows. The same options are used to configure the JMS producers in
the rus-job-processor and in the rus-bssadapter, however with other prefixes (RUS.PROCE
SSOR.jms. and rus.bssadapter.jms. respectively). Also the same options are used
to configure JMS producers in the case of export plugins - this time with a simple prefix jms.
(see below for examples).

Property name Type Default
value /
mandatory

Description

--- JMS messaging ---
accounting.jms.
credential.[.*]

string can have
subkeys

- Under this prefix the
standard UNICORE
properties can be used to
configure a credential used
for the JMS connection
over TLS.

accounting.jms.
password

string empty
string

Password used for
username authentication to
the broker.

http://quartz-scheduler.org/documentation/quartz-2.x/tutorials/tutorial-lesson-06
http://quartz-scheduler.org/documentation/quartz-2.x/tutorials/tutorial-lesson-06
http://quartz-scheduler.org/documentation/quartz-2.x/tutorials/tutorial-lesson-06


RUS Accounting for UNICORE 16

Property name Type Default
value /
mandatory

Description

accounting.jms.
queue

string jobs Name of a queue which
should be used on the
broker.

accounting.jms.
truststore.[.*]

string can have
subkeys

- Under this prefix the
standard UNICORE
properties can be used to
configure a truststore used
for the JMS connection
over TLS.

accounting.jms.
url

string tcp://
localh
ost:
61616

URL of the JMS broker.

accounting.jms.
username

string - Optional username, which
should be used for
username authentication to
the broker.

5.3 Configuring rus-service export plugins

In order to provide a possibility to extend rus-service module, data export plugins mechanism
is available. Plugins allows you to invoke arbitrary action after a record is inserted or updated.
Plugin configuration is in the ${CONF}/rus/rus_extensions.xml file. Plugin con-
figuration can be changed on-the-fly. Module will automatically detect this event and reload
configuration.

Sample configuration is shown below:

<extensions xmlns="http://www.icm.edu.pl/2010/rus-service/ ←↩
plugins/types">

<extension class="pl.edu.icm.unicore.accounting.bat. ←↩
BATEventListener" id="bat">

<config>
<property key="jms.url">tcp://192.168.87.100:61616</ ←↩

property>
<property key="jms.queue">jobs</property>
<property key="bat.site.name">icm-unicore-testbed</ ←↩

property>
<!-- Uncomment to enable login/password authentication ←↩

-->
<property key="jms.username">system</property>
<property key="jms.password">manager</property>
<!-- Uncomment to enable SSL -->



RUS Accounting for UNICORE 17

<!--
<property key="jms.credential.format">jks</property>
<property key="jms.credential.path">/path/to/your/ ←↩

keystore</property>
<property key="jms.credential.password">123456</ ←↩

property>
<property key="jms.truststore.type">keystore</property ←↩

>
<property key="jms.truststore.keystorePath">/path/to/ ←↩

your/truststore</property>
<property key="jms.truststore.keystorePassword ←↩

">123456</property>
-->

</config>
<condition>exitStatus != null and globalUserId != null</ ←↩

condition>
</extension>
<extension id="ur"

class="pl.edu.icm.unicore.accounting.service.jms. ←↩
UrEventListener">

<config>
<property key="jms.url">tcp://192.168.87.100:61616</ ←↩

property>
<property key="jms.queue">chunkes</property>

</config>
<condition>true</condition>
</extension>

</extensions>

Class attribute inside <extension> element defines Java class name. Attribute Id allows
you to use few plugins which are implemented by the same class. Id distinguishes different
entries.

Config section settings are passed to a plugin as Java Properties.

In order to generate notification by notification manager, condition defined in <condition>
element must be evaluated to true. See below for description how to create conditions.

We provide two plugins: UrEventListener (shipped inside rus-service) and BATEv
entListener (inside rus-export-bat module).

UrEventListener allows for simple passing of UsageRecords to another broker. It can be
used to sent records to rus-ur-site module. Alternative usage is ability to create hierarchi-
cal structure of a grid. Records can be then gathered at several, arbitrary defined levels. Please
keep in mind, that <condition> element allows you to filter records.

The second plugin (BATEventListener) converts record from UsageRecord format to BAT
format, which is used inside the PL-Grid project.



RUS Accounting for UNICORE 18

Parameters responsible for broker communication are the same in case of the two plugins. BAT
EventListener allows to use one additional configuration property: bat.site.name,
which overrides the site for all records exported with this plugin.

Element <condition> have to contain a valid Spring Expression Language (SpEL) expres-
sion. The simple rules are quite intuitive for a detailed discussion of the SpEL syntax check the
Spring documentation: http://static.springsource.org/spring/docs/3.0.x/reference/expressions.html#expressions-
language-ref.

Sample SpEL expressions:

exitStatus != null and globalUserId != null

Matches all records that have exitStatus and globalUserId fields set. Such expression will match
only complete records (with data from BSS and Unicore/X) of finished jobs.

exitStatus != null
and globalUserId != null and

not attributes[’urn:SAML:voprofile:group’]
.?[#this.startsWith(’/someVO’)].isEmpty()

Matches all records as above, but the security related attributes of the job must possess the
urn:SAML:voprofile:group attribute with the value starting with /someVO. Note that the check
is constructed in a way that correctly handles all situations when the attribute is not set at all.

Available elements in SpEL context:

element name type description collected at
batchServer String batch server name

(machine name)
unicore and bss

localJobId String local job id unicore and bss
localUserId String local user id unicore and bss

group String user UNIX group bss
projectName String project name bss

queue String BSS queue name bss
ctime Long time when job was

created
bss

qtime Long time when job was
queued

unicore and bss

etime Long time when job
eligible to run

bss

startTime Long time when job was
started

bss

endTime Long time when job was
finished

bss

execHosts List<String> nodes which
computed job

bss

cpuTime String cpu time bss

http://static.springsource.org/spring/docs/3.0.x/reference/expressions.html#expressions-language-ref
http://static.springsource.org/spring/docs/3.0.x/reference/expressions.html#expressions-language-ref


RUS Accounting for UNICORE 19

element name type description collected at
wallTime String wall time bss
exitStatus Integer process exit status bss

globalJobId String global job id unicore
vo String virtual

organization
unicore

globalUserId String global user id unicore
jobName String job name bss

status String job status unicore and bss
sitename String site name unicore
attributes Map<String,

List<String>>
security attributes unicore

origin String origin of the
record: bss
unicorex merged
or null

unicore and bss

Programming custom plugins

If you want to create your own extension, you have to implement class which inherits from
AbstractDataEventListener, which defines the following methods:

public void close();
public abstract boolean onData(UsageRecordType ur);

and contains a default constructor.

5.4 Configuring rus-service reporting

This feature was mainly developed to allow for generating Aggregated Usage Records, but can
be extended to create other report types.

Configuration file is located in: ${CONF}/rus/reporting.xml.

The configuration will be explained using a representative example:

<reporting xmlns="http://www.icm.edu.pl/2010/rus-service/ ←↩
plugins/reporting"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.icm.edu.pl/2010/rusa- ←↩

service/plugins/reporting rus-service-reporting.xsd">
<reportItem id="APEL">

<resultTransformerClass>pl.edu.icm.unicore.accounting. ←↩
service.reporting.AURReportingTransformer</ ←↩
resultTransformerClass>

<cronExpression>0 * * * * ?</cronExpression>



RUS Accounting for UNICORE 20

<postProcessorClass>pl.edu.icm.unicore.accounting. ←↩
service.reporting.JMSSendPostProcessor</ ←↩
postProcessorClass>

<config>
<property key="jms.url">tcp://192.168.87.100:61616</ ←↩

property>
<property key="jms.queue">AUR</property>
<property key="jms.username">system</property>
<property key="jms.password">manager</property>

</config>
<whereAttributes>

<globalUserId groupBy="true">
<value>user1</value>
<value>user2</value>

</globalUserId>
<localUserId>

<any/>
</localUserId>
<machineName>

<any/>
</machineName>
<host>

<any />
</host>

</whereAttributes>
<timePeriod>weekly</timePeriod>

</reportItem>
</reporting>

We have one reportItem in this sample configuration file. Each of reportItemmust have
a unique id. Report items are used to distinguish between different report configurations.

The process of reporting consists of two steps: report preparation and report postprocessing. In
the first step internal rus-service report data is formatted to the desired form. In the latter step
the previously generated report for instance can be sent over network or saved to a file.

The resultTransformerClass entry defines what implementation will handle a transla-
tion from an internal format to the final report format. In the example the pl.edu.icm.unic
ore.accounting.service.reporting.AURReportingTransformer class per-
forms a translation to the Aggregated Usage Record (AUR).

The postProcessorClass defines a class which performs the record postprocessing. The
pl.edu.icm.unicore.accounting.service.reporting.JMSSendPostProce
ssor class sends generated reports via JMS.

The list of available implementations is:



RUS Accounting for UNICORE 21

Implementation class Type Description
pl.edu.icm.
unicore.
accounting.
service.reporting.
AURReportingTransf
ormer

transformer Produces OGF AUR draft
specification reports

pl.edu.icm.
unicore.
accounting.
service.reporting.
BypassReportingTra
nsformer

transformer Do-nothing transformer.
Mostly useful with
Logging postprocessor
when resulting format is
not important.

pl.edu.icm.
unicore.
accounting.
service.reporting.
LoggingPostProces
sor

postprocessor Writes the record to the log
file. You can log reports to
a separate file by means of
Log4j configuration. The
logging is performed in
INFO level with category
equal to the postprocessor
class name.

pl.edu.icm.
unicore.
accounting.
service.reporting.
JMSSendPostProces
sor

postprocessor Sends records over JMS
channel.

pl.edu.icm.
unicore.
accounting.car.
CARReportingTransf
ormer

transformer Produces report in CAR
format. Available in
rus-export-car package.

pl.edu.icm.
unicore.
accounting.car.
STOMPSendPostProce
ssor

postprocessor Sends records over
STOMP channel. Makes
sense only with CAR
transformer. Available in
rus-export-car package.

The config element contains arbitrary properties which are used to configure the chosen result
transformer and postprocessor implementations. In the example the JMS configuration is set: it
is possible to specify jms url, queue, username or password, and keystore/truststore information.

There are several advanced properties which can be set for all implementations. There is one
of them which can be especially useful: use.current.period. If this property is defined
and its value is true, then reporting data is collected from the current time period (day, week,
month or year). Note that in this case subsequent invocations of the reporting in the same



RUS Accounting for UNICORE 22

period (e.g. in the same week) can produce different results, as new records can be added to
the database in the meantime. When this option is not set, then reporting uses data from the
last completed period of time. Example: Assuming that the report is generated on 25.02.2010,
timePeriod is set to monthly, by default the report will contain all jobs accounted between
01.01.2010 and 31.01.2010. If additionally use.current.period is set to true, then the
report will include the jobs accounted between 01.02.2010 and 25.02.2010.

The cronExpression element allows for setting up a schedule of the report generation. For
information about the cron expression syntax refer to the page: http://www.quartz-scheduler.org/-
documentation/quartz-1.x/tutorials/crontrigger.

The timePeriod element allows for selecting time range over which the report is generated.
Available values: daily, weekly, monthly, yearly.

The optional whereAttributes element allows for filtering which records are used for gen-
erating report. Each subelement of the whereAttributes element must be one of the at-
tributes enumerated in possible reporting xml values table. If you specify <any /> element as
child of whereAttribute, than all values will be included in report. However, if you enumerate
values, than only those enumerated values are used for generating the report.

Additionally each of the elements in whereAttributes can have the groupBy="true"
XML attribute. If so, then the behaviour of the report generator is changed: a separate report is
created for each and every distinct value of such an attribute (or for each distinct combination
of values if more then one attribute has the groupBy set).

Example: We have grid system which is used by users: CN=user1,OU=Grid, CN=user2
,OU=Grid, and some others. The following configuration generates two reports: one for user
CN=user1,OU=Grid, and second for CN=user2,OU=Grid while for other users no report
is generated.

<globalUserId groupBy="true">
<value>CN=user1,OU=Grid</value>
<value>CN=user2,OU=Grid</value>

</globalUserId>

But when we set groupBy to false (or simply skip it), then only one report will be generated,
only based on jobs, which are submitted either by CN=user1,OU=Grid or CN=user2,OU=
Grid.

<globalUserId groupBy="false">
<value>CN=user1,OU=Grid</value>
<value>CN=user2,OU=Grid</value>

</globalUserId>

Every child of whereAttributes element can have the groupBy attribute.

5.4.1 Available reporting xml attributes

Possible where attributes. You can use <any /> or enumerate values:

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger
http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger


RUS Accounting for UNICORE 23

Attribute name Description
globalUserId DN of the user, always available
localUserId local user identifier, always available
status Status of the job, one of completed,

failed, aborted, always available
machineName Name of the BSS host (ususally the TSI

machine), always available
queue Name of the BSS queue, may be null
vo Name of the job’s VO, may be null
project Name of the job’s project, may be null
submitHost Name of the Unicore/X host, may be null
site Name of the site, may be null

Additionally each report transformer as its input receives the actual reported values, which are
summed up for each entry (controlled by the groupBy attribute). The aggregated data consist
of: number of jobs, walltime, CPU time, virtual memory and physical memory.

5.5 Configuring rus-export-car

With this plugin (which supersedes the older test version called rus-export-apel) one can ex-
port records from the RUS service using EMI Messaging Protocol for Accounting (defined:
https://wiki.egi.eu/wiki/APEL/MessagingProtocol). Records are encoded in EMI Compute Ac-
counting Record (CAR) format. It is possible to use this system either send individual job
records or summary (aggregated) records.

In order to install rus-export-car, copy required jars from distribution into rus-service lib folder.

To configure the export of aggregated records, create new entry in reporting.xml:

<reportItem id="APEL-testendpoint">
<resultTransformerClass>pl.edu.icm.unicore. ←↩

accounting.car.CARReportingTransformer</ ←↩
resultTransformerClass>

<cronExpression>00 59 23 1 * ?</cronExpression>
<postProcessorClass>pl.edu.icm.unicore.accounting. ←↩

car.STOMPSendPostProcessor</postProcessorClass>

<config>
<property key="jms.stomp.host">BROKER- ←↩

HOSTNAME</property>
<property key="jms.stomp.port">BROKER-PORT</ ←↩

property>
<property key="jms.stomp.user">BROKER-USER ←↩

or remove the property if not needed</ ←↩
property>

https://wiki.egi.eu/wiki/APEL/MessagingProtocol


RUS Accounting for UNICORE 24

<property key="jms.stomp.password">BROKER- ←↩
PASSWORD or remove the property if not ←↩
needed</property>

<property key="jms.stomp.topic">BROKER-QUEUE ←↩
</property>

<property key="jms.stomp.responseTimeout"> ←↩
BROKER-CONNECTION-TIMEOUT-MS</property>

<property key="car.config.keystore.path"> ←↩
KEYSTORE-WITH-PK</property>

<property key="car.config.keystore.password ←↩
">KEYSTORE-PASSWORD</property>

<property key="car.config.keystore.alias"> ←↩
KEYSTORE-ALIAS</property>

<property key="car.config.keystore.type">JKS ←↩
</property>

<property key="car.config.truststore.path"> ←↩
TRUSTSTORE-WITH-RECEIVER-CERT</property>

<property key="car.config.truststore. ←↩
password">TRUSTSTORE-PASSWORD</property>

<property key="car.config.truststore.type"> ←↩
TRUSTSTORE-TYPE</property>

<property key="car.config.truststore.alias"> ←↩
TRUSTSTORE-ALIAS-OF-RECEIVER-CERT</ ←↩
property>

<property key="factor.default">DEFAULT-MULT- ←↩
FACTOR</property>

<property key="factor.metric">DEFAULT-METIRC ←↩
(e.g. HEPSPEC)</property>

</config>
<whereAttributes>

<globalUserId groupBy="true">
<any />

</globalUserId>
<site groupBy="true">

<any/>
</site>
<vo groupBy="true">

<any />
</vo>

</whereAttributes>
<timePeriod>monthly</timePeriod>

</reportItem>

You have to set:

• broker settings where to send messages,



RUS Accounting for UNICORE 25

• keystore from which a private key is taken to sign records

• truststore from which a certificate of a consumer is taken to encrypt messages

Finally you can provide arbitrary filtering of records to be sent, but ensure to have groupBy
turned on for globalUserId, site and vo - this is required by CAR specification. Also
timePeriod must be set to monthly according to standard.

For general information about reporting refer to Configuring rus-service reporting.

To configure the export of individual job records, create new entry in rus_extensions.
xml:

<extension class="pl.edu.icm.unicore.accounting.car. ←↩
SSMEventListener" id="apel-detailed">

<config>
<!-- see aggregated configuration - syntax is ←↩

100% the same -->
</config>

<!-- condition for records selection can be freely ←↩
set. Probably you want finished jobs with
complete data from both LRMS and Unicore/X -->

<condition>exitStatus != null and globalUserId != ←↩
null and batchServer != null</condition>

</extension>

The configuration of the broker, truststore, keystore and factors is the same as for the reporting
configuration.

5.6 Accessing the rus-service with UCC

In order to install the UCC plugin:

1. Copy libraries from distribution lib/ directory to ${ucc}/lib or (preferrably) to the
local user’s UCC library folder, which is in $HOME/.ucc/lib.

This UCC extension adds new commands in the (new) Accounting category. Invocation of UCC
with help option will provide a full list.

Resource Usage Service client allows you to query records, which meet specified cri-
teria.

Examples:

./ucc acct-records -f status=completed,site=DemoSite https ←↩
://grid02:8181/DEMO-SITE/services/RUS

(get completed jobs from DemoSite)



RUS Accounting for UNICORE 26

./ucc acct-reports -f queue=ext,machineName=demo.server -g ←↩
localUserName -t weekly -s DEMO-SITE

(get weekly summaries of jobs grouped per uid, from queue ←↩
ext on LRMS server demo.server)

UCC client can be used to schedule plugin notifications or report from given time period.

Examples:

./ucc acct-plugexec -i reporting:APEL -b 2011-11-01 -e ←↩
2011-10-01 -s DEFAULT-SITE

(executes report with id ’APEL ’for time range: 2011-10-01 ←↩
to 2011-11-01)

./ucc acct-plugexec -i bat -b 2011-10-01 -e 2011-11-01 -s ←↩
DEFAULT-SITE

(schedules ’bat’ plugin execution for each record within ←↩
time range, which meets

criteria specified by the ’bat’ plugin)

5.7 Records contents and merging

Note
This section provides advanced information, which is only relevant for developers and system
integrators.

RUS-Service gets data from two sources per each job (or from one if one of the components
is not configured): rus-job-processor with Grid data and bss-adapter with BSS data. Typically
for each job, each of the data collectors produces multiple records, when job’s state is changed.
Rus-Service merges all records corresponding to a single job into a single record, which should
contain the most recent job’s status. Merging is done in different ways depending on record’s
element.

Records are matched together first by the globalJob id and then by localJobId and Machine-
Name.

The following table shows all supported record elements along with components which can
produce them and merging algorith being applied. Note that in many cases particular piece of
data is provided only in some records comming from a particular source. For instance consumed
memory is provided by bss-adapter but only in the record signaling job’s end. More details (e.g.
syntax of fields) can be found in https://www.ogf.org/documents/GFD.98.pdf

The merging algorithms used in the table:

https://www.ogf.org/documents/GFD.98.pdf


RUS Accounting for UNICORE 27

• first-win - the first non-empty value is used, the subsequent ones are ignored.

• bss-win-warn - the value from BSS overwrites the older ones. When a different value is
received a warning is produced, regardless of the actual change after merge (i.e. the value
should be constant in the system).

• bss-win - the value from BSS overwrites the older ones.

• ux-win-warn - the value from Unicore/X overwrites the older ones. When a different value
is received a warning is produced, regardless of the actual change after merge (i.e. the value
should be constant in the system).

• fail-on-change - if a different value is received, then the new record is ignored with a
warning (i.e. the value must be the same in the system)

• ignore-new-warn - if a different value is received, then the new value is ignored with a
warning (i.e. the value should be the same in the system)

• overwrite-status - used to merge job status: the new status overwrite the old one, but
only if the old one was not in one of the terminal states.

XML element
name

Source Merging
algo-
rithm

Description

RecordIdent
ity@
createTime

BSS &
U/X

see
desc.

Creation time of the first record of the job.
Upon merging the earliest value is always
used (typically it is the value from the first
record).

RecordIdent
ity@recordId

U/X first-
win

Unique record identity. In merged records it
is the value of the first Id received.

JobIdentity/
GlobalJobId

U/X fail-
on-
cha
nge

UNICORE Job id

JobIdentity/
LocalJobId

BSS &
U/X

fail-
on-
cha
nge

BSS Job Id

UserIdentity/
LocalUserId

BSS &
U/X

bss-
win-
warn

Owner’s uid

UserIdentity/
GlobalUserN
ame

U/X fail-
on-
cha
nge

Owner’s DN



RUS Accounting for UNICORE 28

XML element
name

Source Merging
algo-
rithm

Description

JobName BSS ign
ore-
new-
warn

Job’s name

ProjectName BSS ign
ore-
new-
warn

Job’s project (aka account string). In case
of UNICORE jobs it is just the UNICORE
job project.

Status BSS &
U/X

overw
rite-
sta
tus

Job’s status

MachineName BSS &
U/X

fail-
on-
cha
nge

BSS server name

SubmitHost BSS &
U/X

ux-
win-
warn

Name of the machine from which job was
submited to BSS. In records from
Unicore/X it is its own hostname, in records
from BSS it might be other hostname in
case of non-UNICORE jobs.

Queue BSS bss-
win

BSS queue name

Processors BSS ign
ore-
new-
warn

Total number of CPUs used on all nodes

NodeCount BSS ign
ore-
new-
warn

Number of nodes the job used

Host
description=
"CPUS=N;
SLOTS=A,B..."

BSS ign
ore-
new-
warn

One element for each used node contains its
name. Additionally description provides
number of CPUs at this host and list of
occupied slots

StartTime BSS ign
ore-
new-
warn

Job’s execution start time.

EndTime BSS ign
ore-
new-
warn

Job’s execution end time.



RUS Accounting for UNICORE 29

XML element
name

Source Merging
algo-
rithm

Description

WallDuration BSS ign
ore-
new-
warn

Job’s wall time

CpuDuration BSS ign
ore-
new-
warn

Job’s CPU time

TimeInstant
type="etime"

BSS ign
ore-
new-
warn

Time when job was actually enqued by BSS

TimeInstant
type="qtime"

BSS ign
ore-
new-
warn

Time when job is ready to to be queued by
BSS

TimeInstant
type="ctime"

BSS ign
ore-
new-
warn

Time when the job was first seen at BSS

TimeInstant
type=
"maxWalltime"

BSS ign
ore-
new-
warn

Start time + walltime, i.e. the latest point in
time when the job should be finished. This
is introduced for consistency checking.

TimeInstant
type="uxToBss
SubmitTime"

U/X ign
ore-
new-
warn

Time when job was submitted to BSS from
Unicore/X

TimeInstant
type=
"uxStartTime"

U/X ign
ore-
new-
warn

Time when it was detected by Unicore/X
that the job was started. It is an
approximation of the StartTime

TimeInstant
type=
"uxEndTime"

U/X ign
ore-
new-
warn

Time when it was detected by Unicore/X
that the job was finished. It is an
approximation of the EndTime

Memory type=
"shared"

BSS ign
ore-
new-
warn

Virtual memory consumed by the job



RUS Accounting for UNICORE 30

XML element
name

Source Merging
algo-
rithm

Description

Memory type=
"physical"

BSS ign
ore-
new-
warn

Physical memory consumed by the job

Resource
description=
"infrastructu
re"

U/X ign
ore-
new-
warn

Only filled with a constant value unicore

Resource
description=
"exit_status"

BSS ign
ore-
new-
warn

Exit status of the job

Resource
description=
"group"

BSS ign
ore-
new-
warn

Owner’s gid

Resource
description=
"vo"

U/X ign
ore-
new-
warn

Owner’s effective VO

Resource
description=
"sitename"

U/X
(BSS)

ign
ore-
new-
warn

Name of the whole site to which the
Unicore/X belongs to. This may be
configured also in bssadapter so records
from BSS adapter can contain this value.
However this is suggested ONLY in case
when there is no RUS job-processor
installed.

Resource
description=
"attributes"

U/X ign
ore-
new-
warn

Owner’s authorization attributes including
role and all VOs, Bencoded

Resource
description=
"recordOrig
in"

BSS &
U/X

see
desc.

Record’s origin: bss, unicorex or
merged if data was merged from both
sources.

6 rus-job-processor

Since UNICORE 6.5.0, rus-job-processor is distributed together with Unicore/X server, there-
fore only its configuration is necessary. If you use older UNICORE distribution, then you should
also use older release of this accounting software and check its documentation about installation



RUS Accounting for UNICORE 31

instructions.

1. Enable job processor which accounts job stages in the ${CONF}/xnjs_legacy.xml
file. The following line must be uncommented (or added if is not present):

<eng:Processor>pl.edu.icm.unicore.accounting.processor. ←↩
AccountingJobProcessor</eng:Processor>

into the section <eng:ProcessingChain actionType="JSDL" ...>. The line
should be added as the last entry (typically after <eng:Processor>de.fzj.unic
ore.xnjs.ems.processors.UsageLogger</eng:Processor> entry).

2. Record merge is performed based on BSS Machine hostname. Make sure that property
CLASSICTSI.machine in xnjs_legacy.xml equals to hostname setup by BSS
Adapter. To override CLASSICTSI.machine property add RUS.bssMachine prop-
erty in xnjs_legacy.xml. On BSS Adapter side you can manually alter this property
by updating rus.service.bssHostname in CONF/rus_bssadapter.conf.
(equals is defined as string equal, so node113.domain.com NOT equals node113)

3. Configure JMS connection properties in ${CONF}/xnjs_legacy.xml. You can add
following properties:

<eng:Property name="RUS.PROCESSOR.jms.url" value="tcp:// ←↩
localhost:61616"/>

<eng:Property name="RUS.PROCESSOR.jms.queue" value="ur- ←↩
parts"/>

<eng:Property name="RUS.PROCESSOR.jms.username" value ←↩
=""/>

Only jms.url and jms.queue are required. If you want to confgure SSL for JMS
connections, it is done using the same properties for credential and truststore as in any
other UNICORE component (starting from 6.6 release). It is only required to use the
RUS.PROCESSOR.jms. prefix. Full reference is available here

4. Restart Unicore/X.

5. Verify your installation. Submit any job. If logging is set to DEBUG mode (see note)
log file should contain information about a sent record.

Logging
In order to enable debug mode add following line to the ${CONF}/logging.propert
ies:

log4j.logger.pl.edu.icm.unicore.accounting=DEBUG



RUS Accounting for UNICORE 32

Submit host property
UR element <submitHost> has default value of the host’s canonical name. If you want to
override this value setup following property in ${CONF}/xnjs_legacy.xml:

<eng:Property name="RUS.ce.node.name" value=" ←↩
your_CE_hostname"/>

Sitename property
UR element <resource description="sitename"> has default value set to <machineName>. If
you want to override this value setup following property in ${CONF}/xnjs_legacy.xml:

<eng:Property name="RUS.site.name" value="your_site_name ←↩
"/>

7 rus-bssadapter

Installation and configuration is relatively simple:

1. Unpack the installation archive and place the contained folder in the proper destination
on the same machine where Batch System Server (BSS) resides. Below we refer to the
folder where the unpacked distribution resides with ${installPath}. Alternatively
install the package from the RPM.

2. Update ${installPath}/conf/rus_bssadapter.conf by setting paths, Ac-
tiveMQ Broker location and SSL configuration (which is optional). Choose a correct
batch subsystem. In case of each of them there are only few extra options to be set. The
configuration file is simple and well commented. The configuration options reference is
provided below.

3. Record merge is performed based on BSS Machine hostname. Make sure that property
CLASSICTSI.machine in xnjs_legacy.xml equals to hostname setup by BSS
Adapter. To override CLASSICTSI.machine property add RUS.bssMachine prop-
erty in xnjs_legacy.xml. On BSS Adapter side you can manually alter this property
by updating rus.service.bssHostname in conf/rus_bssadapter.conf.
(Note: equals is defined as string equal, so node113.domain.com NOT equals node113)

4. Ensure that the user who will run BSS adapter have possibility to read accounting data.
In case of SGE and Torque it means the directory specified by the rus.service.
accountingDataDir property of the configuration file. In case of SLURM sacct
-a must show all jobs to the BSS user.



RUS Accounting for UNICORE 33

5. Usually you will want start the BSS adapter daemon to be started on the machine startup.
Do it as your OS requires. Example initialization scripts can be found in extra/init.
d directory of the distribution. Note that you shouldn’t run this program as root.

6. Now you can start the server. Check logs if there are no errors.

The detailed configuration options reference follows:

Property name Type Default
value /
mandatory

Description

--- Batch subsystem settings ---
rus.bssadapter.
accountingData
Dir

filesystem path /var/
spool/
torque/
server_p
riv/acco
unting/

Path to accounting data,
used for Torque and SGE.

rus.bssadapter.
sacctCmd

string sacct Path of the sacct program

rus.bssadapter.
sacctExtraArgs

string empty
string

Don’t touch this unless you
know what you are doing!
Allows to pass additional
switches to the sacct
application, e.g. to limit
what is accounted. Note
that the program adds a lot
of switches on its own, and
you shouldn’t interfere with
them. The actual list is
printed in the DEBUG
mode.

rus.bssadapter.
slurmMaxWalltime
Hours

integer number 100 The maximum time limit of
of the partition allowing for
the longest jobs, in hours.
Note that this need not to be
precise - it is used only in
rare cases, to provide an
approximate maximum
job’s finish time, when no
other information is
available.

--- General settings ---



RUS Accounting for UNICORE 34

Property name Type Default
value /
mandatory

Description

rus.bssadapter.
bssHostname

string - Name of the local
hostname. If not specified
the value will be the
automatically resolved
local host name

rus.bssadapter.
dataPointerFile

string conf/
dataPoin
ter.txt

File holding information
about the progress of
sending accounting data. It
is created and filled
automatically.

rus.bssadapter.
engine

[torque, sge,
slurm]

torque BSS engine to which is
used

rus.bssadapter.
jms.[.*]

string can have
subkeys

- Under this prefix the JMS
connection settings needs to
be provided (see separate
documentation).

rus.bssadapter.
normalizationFac
tor

floating point
number

- Value of the normalization
factor of the normalization
metric. If undefined, then
metric information won’t
be put into the records
produced by this
component.

rus.bssadapter.
normalizationMet
ric

string - Name of the normalization
metric, such as HEPSPEC.
If undefined, then metric
information won’t be put
into the records produced
by this component.

rus.bssadapter.
sitename

string - Optional property, when set
its value is used to provide
the sitename to which this
BSS system belongs to.
This is useful only in case
when there is no Grid
(Unicore/X) RUS job
processor installed for this
BSS, as normally it
provides this information.



RUS Accounting for UNICORE 35

Property name Type Default
value /
mandatory

Description

rus.bssadapter.
sleepLongTime

integer number 180 Time between subsequent
accounting data scans (in
seconds) used if at least last
3 scans finished with an
error.

rus.bssadapter.
sleepTime

integer number 30 Time between subsequent
accounting data scans, in
seconds.

The detailed JMS properties reference is available in the rus-service configuration section.

8 Installation of rus-site

Ur-site requires own database. We copy data from rus-site via JMS using pl.edu.icm.
unicore.accounting.service.jms.UrEventListener plugin. We can specify
condition, to filter outgoing traffic.

Look at architecture overview for better understaning data flow:

rus-service→ UrEventListener→ (JMS)→ broker→ (JMS)→ ur-site.

Following informations describes installation on Apache Tomcat. For other containers some of
paths may be different.

Additionally we assume that we deploy application under /ur-site context.

1. Download and install Tomcat.

2. Create JNDI config in: ${tomcat}/conf/Catalina/localhost/ur-site.
xml (if you’are using ur-site as context).

<Context path="/ur-site" debug="5" reloadable="true" ←↩
crossContext="false">

<Resource name="jdbc/ur-site" auth="Container" type=" ←↩
javax.sql.DataSource"
factory="org.apache.commons.dbcp. ←↩

BasicDataSourceFactory"
url="jdbc:mysql://locahost/RUS"
driverClassName="com.mysql.jdbc.Driver"
username="rus" password="rus_dba"
maxIdle="4" maxActive="20" />

<Resource name="jms/connection" auth="Container" type ←↩
="org.apache.activemq.ActiveMQConnectionFactory"



RUS Accounting for UNICORE 36

description="JMS Connection Factory"factory="org. ←↩
apache.activemq.jndi.JNDIReferenceFactory"

brokerURL="failover:tcp://localhost:61616" ←↩
brokerName="ActiveMQBroker" userName="system" ←↩
password="manager" />

<Resource name="jms/destination" auth="Container" type ←↩
="org.apache.activemq.command.ActiveMQQueue"
description="UR queue" factory="org.apache.activemq ←↩

.jndi.JNDIReferenceFactory" physicalName="ur- ←↩
site"/>

<Resource name="app/config" auth="Container" ←↩
description="properties file location" type="java. ←↩
lang.String"
factory="pl.edu.icm.unicore.accounting.site.jndi. ←↩

StringFactory"
value="file:///home/ml054/ur-site/ur-site. ←↩

properties" />
</Context>

Properties file has following content:

container.auth.enabled=true #enabled by default
uvos.auth.enabled=false #disabled by default

uvos.auth.entry.point=https://uvos-server:2443/webauth/ ←↩
VOauthentication.do

uvos.auth.issuer=http://localhost/ur-site/

uvos.query.server=https://uvos-server:2443
uvos.query.admin.bss=bss_admin@/grid
uvos.query.user.bss=bss_user@/grid

uvos.auth.keystore=/path/to/your/keystore
uvos.auth.keystoreAlias=mykey
uvos.auth.keyPasswd=123456
uvos.auth.keystorePasswd=123456
uvos.auth.keystoreType=JKS
uvos.auth.truststore=/path/to/uvos/PUBLIC/KEY
uvos.auth.truststoreType=JKS
uvos.auth.truststorePasswd=123456

3. Create ur-site database with following DDL:

CREATE TABLE IF NOT EXISTS ‘RECORDS‘ (
‘BSS_HOST‘ varchar(128) DEFAULT NULL,



RUS Accounting for UNICORE 37

‘BS_ID‘ varchar(255) DEFAULT NULL,
‘ACTION_UUID‘ varchar(36) DEFAULT NULL,
‘ID‘ int(11) NOT NULL AUTO_INCREMENT,
‘RECORD‘ text NOT NULL,
‘STATUS‘ varchar(20) DEFAULT NULL,
‘GLOBAL_USER_ID‘ varchar(255) DEFAULT NULL,
‘QUEUE‘ varchar(100) DEFAULT NULL,
‘SUBMIT_HOST‘ varchar(255) DEFAULT NULL,
‘START_TIME‘ datetime DEFAULT NULL,
‘END_TIME‘ datetime DEFAULT NULL,
‘QUEUED_TIME‘ datetime DEFAULT NULL,
‘VO‘ varchar(128) DEFAULT NULL,
PRIMARY KEY (‘ID‘),
UNIQUE KEY ‘BSS_HOST‘ (‘BSS_HOST‘,‘BS_ID‘),
UNIQUE KEY ‘ACTION_UUID‘ (‘ACTION_UUID‘),
KEY ‘IDX_STATUS‘ (‘STATUS‘),
KEY ‘IDX_GLOBAL_USER_ID‘ (‘GLOBAL_USER_ID‘),
KEY ‘IDX_QUEUE‘ (‘QUEUE‘),
KEY ‘IDX_SUBMIT_HOST‘ (‘SUBMIT_HOST‘),
KEY ‘IDX_START_TIME‘ (‘START_TIME‘),
KEY ‘IDX_END_TIME‘ (‘END_TIME‘),
KEY ‘IDX_QUEUED_TIME‘ (‘QUEUED_TIME‘),
KEY ‘IDX_VO‘ (‘VO‘)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=1 ←↩
;

4. Deploy war into container.

5. Install MySQL Connector to Tomcat.

6. Copy xmlsec and commons-logging-api libraries (jar files) to the endorsed/
directory of Tomcat server. You can find those libraries (in correct version) in the ur-
site web application’s WEB-INF/lib folder. After this operation restart of the Tomcat
server is required.

7. In order to use container autorization user requires ur_site_admin role. Ur-site calls
container-auth.html, which is protected by container authorization. You can use
both uvos and container authorization.

Example Tomcat CATALINA_HOME/conf/tomcat-users.xml:

<tomcat-users>
...
<role rolename="ur_site_admin" />
<user username="ur_site_admin" password="Ad|\/|!|\|" ←↩

roles="ur_site_admin"/>
...

</tomcat-users>



RUS Accounting for UNICORE 38

8. (optional) You can also configure authentication using UVOS. You need UVOS server
(http://uvos.chemomentum.org/) + webauth plugin installed to UVOS. Information about
installation and configuration of UVOS + webauth plugin are avaiable on UVOS home
page.

Configure attributes required to admin and user role in ur-site.

uvos.query.admin.bss=bss_admin@/gridmeans that ADMIN must have bss
attribute, with value = bss_admin in group bss_admin. So general form is: uvos.
query.(admin|user).attributeName=attributeValue[@optionalGro
up].

Note
Rus-ur-site requires seperate database then rus-serivce.

Note
Ur-site requires active connection to broker to start!

Note
uvos.auth.truststore contains UVOS public key, NOT public keys of trusted CA.

Logging of the ur-site web application is controlled by a file WEB-INF/classes/log4j.
properties. By default it logs to a separate file: CATALINA_HOME/logs/ur-site.
log. You can reconfigure logging settings there.

9 Usage Logger Feeder

When infrastructure on which we installing accounting system works for some period of time,
then the question arrives: Is there any possibility to import archival accounting data to rus-
accounting service? The answer is true, but we need archival log files from Unicore/X in version
6.4.1+. Those logs contains UsageLogger entries. Based on those entries we can generate
accounting data, which are identical to those which are generated by rus-job-processor.

Rus-usage-logger-feeder is a standalone application. It is configured with ActiveMQ broker pa-
rameters. As input parameters we supply time range of imported data and path to the Unicore/X
server logs. Application search throught input files in order to find UsageLogger entries. Every
item found is parsed and UsageRecord is generated, and sent to the broker. After the import
operation is completed, the application displays information about amount of records found per
each day.

Sample execution:

http://uvos.chemomentum.org/


RUS Accounting for UNICORE 39

[ml054@raptor bin]$ ./run.sh 2010-10-23 2010-10-29 /home/ ←↩
ml054/sample_logs/uas.log

Using following parameters:
Start date : 2010-10-23
End date : 2010-10-29
Log filename: /home/ml054/sample_logs/uas.log
2011-04-11 12:05:49,913 [main] INFO
pl.edu.icm.unicore.accounting.commons.jms.JMSFactory
- Using JMS server: tcp://localhost:61616 queue: feeder
Processing file: /home/ml054/sample_logs/uas.log.2010-10-23
...
Processing file: /home/ml054/sample_logs/uas.log.2010-10-29
------------------------------------------------------------------------ ←↩

---- OPERATION COMPLETED ---------------SUMMARY ←↩
:-----------------------

------------------------------------------------------------------------ ←↩

# of Items + File name
-----------+----------------------------------------------------------- ←↩

243 + uas.log.2010-10-23
234 + uas.log.2010-10-24
1022 + uas.log.2010-10-25
562 + uas.log.2010-10-26
706 + uas.log.2010-10-27
246 + uas.log.2010-10-28
1011 + uas.log.2010-10-29

10 Troubleshooting

10.1 Common problems

This sections describes problems caused by broker interaction.

10.1.1 Unable to connect to broker:

Log:

2011-07-30 08:15:13,537 [JMS Consumer Timer] INFO ←↩
JMSParticipant - Rescheduling JMS connection...



RUS Accounting for UNICORE 40

2011-07-30 08:15:23,538 [JMS Consumer Timer] INFO ←↩
JMSParticipant - Connecting to jms: tcp ←↩
://192.168.87.100:61616, queue name = grid10, username: ←↩
system

2011-07-30 08:15:23,554 [JMS Consumer Timer] INFO ←↩
JMSParticipant - Rescheduling JMS connection...

Solution:

Enable debug mode in logging.properties for more info about cause. Than check your connec-
tion with broker.

10.2 rus-service

For ActiveMQ problems please refer to common problems section.

10.2.1 Notifications subsystem:

When scheduled notification fails for 25000 times, then following message is displayed:

Notification with id = <notification-id> for plugin: <plugin ←↩
-id> failed for XXXX times. Removing...

and notification is removed.

When plugins configuration is changed but there are remaining notifications for non-existent
plugin, than following message is shown:

Deleting queued notification for not existent plugin: < ←↩
plugin-id>

When notification fails for 3 times in single notification executor interation, there is high prob-
ablity that subsequent calls will also fail. So NotificationExecutor doesn’t process notification
for this plugin until the next iteration. Following message is shown in log:

Too many errors for plugin: <plugin-id> giving up for this ←↩
session.

There was some records to sent in JMS queue, but unicore was unclean closed or freezed:

There was unsent records in the queue. You can use rus-usage ←↩
-logger-feeder to recover them!



RUS Accounting for UNICORE 41

10.3 rus-job-processor

Job processor uses in memory storage for created records. Capacity of records queue is 5000.
If you stop unicore/X or unicore/X hangs while queue isn’t empty then those records are lost.
You can use rus-ussage-logger-feeder to parse logs and generate lost records. If connection with
broker works fine, than records are sent immediately.

When queue size exceed 4000 records following warning is shown:

There is more then 4000 pending messsages to send. Please ←↩
check JMS broker connection.

When queue is full than following warning is shown:

Can’t add message! Queue is full. Check your JMS connection.

Queue has limited capacity to avoid out of memory exceptions.

10.4 rus-bss-adapter

Refer to common problems. When broker connection is down, current record pointer doesn’t
advance. This approach gives you guarantee that any of record isn’t lost. After connection is
again established historical records are sent to broker.

10.4.1 Poison pill

When record line in BSS log isn’t correctly parsed, then following error is shown:

Invalid record: <here goes record contents>

This line is simply ignored, since parsing proceduce is deterministic, and it could cause poison
pill for bss-adapter.

10.5 rus-usage-logger-feeder

Refer to common problems.

10.6 rus-ucc-client

10.6.1 Rus-service is not installed or installed incorrectly.

Log:



RUS Accounting for UNICORE 42

[root@grid10 bin]# ./ucc accounting -s DEFAULT-SITE -m ←↩
grid10

2011-07-30 08:14:42,473 [main] ERROR HttpChannel - Server ←↩
returned error code = 404 for URI :

https://192.168.87.105:7777/services/RUS. Check ←↩
server logs for details

2011-07-30 08:14:42,475 [main] ERROR BaseUASClient - Got ←↩
Error: class org.codehaus.xfire.

XFireRuntimeException Could not invoke service.. ←↩
Nested exception is org.codehaus.xfire.fault.

XFireFault: Server returned error code = 404 for URI ←↩
: https://192.168.87.105:7777/services/RUS.

Check server logs for details
Error querying RUS Service at https://192.168.87.105:7777/ ←↩

services/RUS
The root error was: org.codehaus.xfire.XFireRuntimeException ←↩

: Server returned error code = 404 for
URI : https://192.168.87.105:7777/services/RUS. ←↩

Check server logs for details
Re-run in verbose mode (-v) to see the full error stack ←↩

trace.
2011-07-30 08:14:42,477 [main] ERROR UCC - Error querying ←↩

RUS Service at https://192.168.87.105:
7777/services/RUS

org.codehaus.xfire.XFireRuntimeException: Could not invoke ←↩
service.. Nested exception is org.

codehaus.xfire.fault.XFireFault: Server returned ←↩
error code = 404 for URI :

https://192.168.87.105:7777/services/RUS. Check ←↩
server logs for details

org.codehaus.xfire.fault.XFireFault: Server returned ←↩
error code = 404 for URI :

https://192.168.87.105:7777/services/RUS. Check ←↩
server logs for details

at org.codehaus.xfire.fault.XFireFault.createFault( ←↩
XFireFault.java:89)

at org.codehaus.xfire.client.Invocation.invoke( ←↩
Invocation.java:83)

at org.codehaus.xfire.client.Invocation.invoke( ←↩
Invocation.java:114)

at org.codehaus.xfire.client.Client.invoke(Client. ←↩
java:336)

at eu.unicore.security.xfireutil.client. ←↩
ReliableProxy.handleRequest(ReliableProxy.java ←↩
:122)



RUS Accounting for UNICORE 43

at eu.unicore.security.xfireutil.client. ←↩
ReliableProxy.doInvoke(ReliableProxy.java:102)

at eu.unicore.security.xfireutil.client. ←↩
ReliableProxy.invoke(ReliableProxy.java:69)

at $Proxy13.extractRUSUsageRecordsByMachineName( ←↩
Unknown Source)

at pl.edu.icm.unicore.accounting.ucc.Accounting. ←↩
getByMachineName(Accounting.java:274)

at pl.edu.icm.unicore.accounting.ucc.Accounting. ←↩
process(Accounting.java:184)

at de.fzj.unicore.ucc.UCC.main(UCC.java:179)
Caused by: org.codehaus.xfire.XFireRuntimeException: Server ←↩

returned error code = 404 for
URI : https://192.168.87.105:7777/services/RUS. ←↩

Check server logs for details
at org.codehaus.xfire.transport.http.HttpChannel. ←↩

sendViaClient(HttpChannel.java:130)
at org.codehaus.xfire.transport.http.HttpChannel. ←↩

send(HttpChannel.java:48)
at org.codehaus.xfire.handler.OutMessageSender. ←↩

invoke(OutMessageSender.java:26)
at org.codehaus.xfire.handler.HandlerPipeline.invoke ←↩

(HandlerPipeline.java:131)
at org.codehaus.xfire.client.Invocation.invoke( ←↩

Invocation.java:79)
... 9 more

Solution:

Verify your installation: Refer to point 10 in rus-service installation procedure.

10.7 rus-export-bat

Refer to common problems.

11 Changes

11.1 rus-ucc-plugin

11.1.1 2.0.0

• Updated to UCC 6.6.0

• Updated to new RUS-Service interface:



RUS Accounting for UNICORE 44

• It is possible to perform queries with multiple constraints.

• It is possible to perform summary report queries.

• New query constraints are available.

11.1.2 1.6.0

• Updated to UCC 6.5.0: short name of XML output opt. changed: x→’X’.

• bugfix #3505249: removed option to query by submit host which is not implemented and
won’t be soon.

11.1.3 1.5.0

• feature #3389959: Re-sending plugin notifications (new command)

• improved -s handling: all Vsites can be used, not only TSFs

• updated to UCC 6.4.2, simplified installation

• better error messages

• more data from records is displayed

11.1.4 1.4.0

• removed getByXXX bug (spaces at the end of SOAP action names)

• changed long parameter name (duplicate --user)

• removed unnecessary libs, which reduced package size from 13 MB to 620 KB.

• clarified parameter names and output.

11.2 rus-service

11.2.1 2.0.0

• New database schema: unified identification of reporting and individual jobs records

• Added support for database rolling, i.e. automatic and configurable movement of old records
to history tables.

• New query WS interface. The original RUS OGF Draft based interface fully dropped as
unusable. New simple yet powerful interface implemented.



RUS Accounting for UNICORE 45

• Updated to USE 2.2.0 and basic security and configuration infrastructure of UNICORE 6.6,
including SSL configuration for JMS.

• Fixed possible problems with DN comparison

• Added support for registering the service in UNICORE Registry

• Configuration is heavily updated. Among others only the master properties file is configured
in UNICORE configuration, not a whole directory. Other configuration files are defined inside
of it. SQL maps are not part of configuration directory anymore.

11.2.2 1.6.1

• bugfix: records with host which doesn’t include description are handled properly now.

11.2.3 1.6.0

• use fixed ordering of notifications so better performance on heavy load is achieved

• added origin to export plugin condition context

• merging of records was revised and fixed in many cases

• creation time of merged record always have the earliest time

• bugfix: SubmitHost is properly merged now (previously it was ignored during merge so only
the value from the first record was used).

• bugfix #3545929: DB connections limit is now correctly handled

• feature #3545930: Updated to MyBatis

• feature #3537691: Updated to USE 2.1, so rus-service can be installed on services from 6.5.0
release. This version is not compatible with older USE relases.

• Fixed a default location of the H2 database to be in data not in target/data

• JMS broker connection interval is increased when a subsequent connection failure is detected,
so log files are less polluted.

11.2.4 1.5.0

• RUS interface class changed from pl.edu.icm.unicore.accounting.commons.ws.ResourceUsagePortType
to pl.edu.icm.unicore.accounting.types.ws.ResourceUsagePortType

• rus-types extracted from rus-commons

• feature #3406826: don’t wait when there are other records to process



RUS Accounting for UNICORE 46

• feature #3406829: Add more strict checking of records consistency

• sitename added to SpEL context

• feature #3389975: Configurable parameters for records processing

• feature #3389962: Better support for lost records from job-processor

• feature #3389973: Support for aggregate records

• feature #3389959: Re-sending plugin notifications

11.2.5 1.4.1

• fixed UVOS dependency issues

11.2.6 1.4.0

• introduces standalone version of rus-service: package with provides rus-serivce with Unicore
container out-of-box.

• rus_extensions.xml is now provided out-of-box with two sample plugins commented out by
default

• package is now shipped with XACML 2.0 policy

• XACML 1.0 policies was removed

• manual reorganization, cleanup, and enhancements

• spring rebase to 3.0.5

• updated status handling

• fixed getByMachineName

11.2.7 1.3.0

• support for Unicore 6.4

• created manual for accounting

11.2.8 1.2.0

• project refactoring



RUS Accounting for UNICORE 47

11.2.9 1.1.3

• replaced commons logging with log4j

• database dialect configuration merged to one file

• urs customization (removed duplicate namespaces to reduce size of UR’s)

11.2.10 1.1.2

• rus_extensions.xml file watcher and automatic plugin config update

• merged database dialect configuration properties file

• commons-logging→ log4j

• altered log levels (introduced TRACE log level)

11.2.11 1.1.1

• fixed broken MySQL support

11.3 rus-bss-adapter

11.3.1 2.0.0

• Minor changes to keep the codebase in line with other components:

• The JMS configuration mechanism is the same as in the other components.

• The overall configuration is based on the common UNICORE configuration framework.

• Added support for specifying normalization metrics

11.3.2 1.7.0

• Added support for SLURM.

• Backup of datapointer file is created before each modification. If original datapointer file is
corrupted, the service won’t start if backup exists.

• Added possibility to set a fixed sitename, for cases when no RUS job-processor is deployed
for the BSS.



RUS Accounting for UNICORE 48

11.3.3 1.6.0

• Information about record origin is added

• fix: Torque main jobs of array job (with id xxxxx[]) in queued or started state are not reported
anymore as were staying in this state forever. Only actual array member jobs are reported.

• Local identifiers of SGE array jobs are now reported as baseid[arrayIdx] instead of baseid-
arrayIdx, so the same syntax as in Torque case is used.

• New feature: after 3 processing failures in a row, subsequent iterations are started after a
longer, configurable delay.

• Proper parsing of lines with 3 tokens and with A, R, C and T codes.

• Updated debug logging to provide more useful information

• All records produced has a creation timestamp, so it is possible to better identify them, even
before merging with other ones.

11.3.4 1.5.0

• Fixed #3390370: fatal errors are now logged to rus.log and startup.log

• Fixed bugs related to not closing file descriptors

• Collecting a maximum job completion time.

11.3.5 1.3.0

• added support for UNICORE 6.4

11.3.6 1.2.0

• new architecture: bss-adapter is feeding JMS queue instead of RUS-service

11.3.7 1.1.3

• log4j on-fly configuration

• log4j.properties changed to logging.properties

11.3.8 1.1.1

• added shutdown hook



RUS Accounting for UNICORE 49

11.4 rus-export-bat

11.4.1 2.0.0

• updated to the rus-service 2.0.0

11.4.2 1.5.1

• job id changed to free form string

11.4.3 1.5.0

• sitename is no longer required. When sitename is null, then sitename from ur is used.

• updated BAT schema to new version:

• added setting of submit_host attribute

• the job Id is integer now

• end time for not completed records is set to the maximum end time of the record

11.4.4 1.4.0

• rus_extensions relocated to conf/rus/ directory

11.4.5 1.3.0

• support for Unicore 6.4

11.4.6 1.2.0

• new architecture introduced

11.4.7 1.1.2

• bat converter: UNKNOWN value in BAT when infrastructure is empty in UR

• on-fly plugin swap enabled

• plugins have now close() method to release resources



RUS Accounting for UNICORE 50

11.5 rus-job-processor

11.5.1 2.0.0

• updated to the common libraries of the 2.0.0 release

• Added support for specifying normalization metrics

11.5.2 1.7.0

• Updated to U/X 6.6.0 API. No functional changes.

11.5.3 1.6.1

• Fixed numerous bugs in persistence configuration for fault tolerance.

• job-processor automatically tries to resend unsent records, also after container restart. Usage-
logger-feeder is mostly not required anymore, except of the manual replying of jobs data.

11.5.4 1.6.0

• Records with information on approximate start, enqueue and end are sent. Data is in stored
in separate fields to the precise BSS elements.

• Information about record origin is added

• bugfix #3390374: duplicated queued records are not sent anymore. Also some missing com-
pleted/failed records should be correctly sent now.

• updated to U/X release 6.5.0 API: selected VO is used.

11.5.5 1.5.0

• The module is included in Unicore/X distribution

• feature #3410407: Add information on the CE which submitted the job

• job-processor collects <resource desciption="sitename"> based on xnjs_legacy.xml property

• only one (or none) VO is reported for each job

11.5.6 1.4.1

• fixed UVOS dependency issues



RUS Accounting for UNICORE 51

11.5.7 1.4.0

• spring rebase to 3.0.5

• updated status handling, job-process now notify about job failure, abort or completition.

11.5.8 1.3.0

• support for unicore 6.4. Note: For unicore 6.3 use version 1.2.0.

11.5.9 1.2.0

• new architecture (rus-job-processor is derived from rus-service)

11.5.10 1.1.2

• rus_extensions.xml file watcher and automatic plugin config update

• merged database dialect configuration properties file

• commons-logging→ log4j

• altered log levels (introduced TRACE log level)

11.5.11 1.1.1

• fixed broken MySQL support

11.6 rus-web-ui

11.6.1 2.0.0

-Renamed to rus-webui from ur-site

11.6.2 1.5.0

• Fixed #3406970: width of records’ details view exceeds width of a browser

• Fixed #3390379: ur-site: filtering of VO-less jobs

• Fixed #3390371: Ur-site must be restarted after broker restart (just use failover:tcp:..,)

• support for container authN added

• site, which allows presentation of gathered data.

• better handling of job status



RUS Accounting for UNICORE 52

11.7 rus-usage-logger-feeder

11.7.1 1.4.0

• (with unicore.services.jobexecution.USAGE and USAGE)


	Introduction
	Data model

	Compatibility
	rus-service
	rus-job-processor
	rus-usage-logger-feeder
	rus-ucc-plugin
	rus-bss-adapter

	JMS Notes
	Installation and basic configuration
	Directory layout
	Deployment planning
	ActiveMQ Broker

	Configuration of the rus-service
	Installation
	Configuration options reference
	Configuring rus-service export plugins
	Configuring rus-service reporting
	Configuring rus-export-car
	Accessing the rus-service with UCC
	Records contents and merging

	rus-job-processor
	rus-bssadapter
	Installation of rus-site
	Usage Logger Feeder
	Troubleshooting
	Common problems
	rus-service
	rus-job-processor
	rus-bss-adapter
	rus-usage-logger-feeder
	rus-ucc-client
	rus-export-bat

	Changes
	rus-ucc-plugin
	rus-service
	rus-bss-adapter
	rus-export-bat
	rus-job-processor
	rus-web-ui
	rus-usage-logger-feeder


