
UNICORE Commandline Client: User Manual

UNICORE COMMANDLINE CLIENT: USER

MANUAL

UNICORE Team

Document Version: 1.0.0
Component Version: 8.0.2
Date: 10 09 2020

This work is co-funded by the EC EMI project under the FP7 Collaborative Projects Grant
Agreement Nr. INFSO-RI-261611.

UNICORE Commandline Client: User Manual

Contents

1 Overview 1

2 Installation and configuration 1

2.1 Prerequisites . 1

2.2 Download . 1

2.3 Installation and configuration . 2

2.4 Preferences file . 2

2.5 Logging . 3

2.6 Installing UCC extensions . 3

2.7 Testing the installation . 3

3 Getting started with UCC 3

3.1 Getting help . 4

3.2 Connecting . 4

3.3 List available sites . 4

3.4 Running your first job . 4

3.5 Listing your jobs . 5

4 Common options to UCC 5

4.1 User preferences . 5

4.2 Configuration file . 6

4.3 Username and password authentication . 7

4.4 Support for token based authentication . 7

4.5 Certificate-based authentication . 9

4.6 Truststore options . 10

4.7 Trust store examples . 14

4.8 Client options . 14

4.9 Other options . 17

UNICORE Commandline Client: User Manual

5 Running jobs 18

5.1 Introduction . 18

5.2 Options overview . 19

5.3 Resource selection . 19

5.4 Processing jobs asynchronously . 20

5.5 Executing a command . 21

6 Job description format 21

6.1 Overview . 22

6.2 Specifying the executable or application . 24

6.3 Arguments and Environment settings . 24

6.4 Application parameters . 25

6.5 Job data management . 26

6.6 Resources . 30

6.7 Miscellaneous options . 31

7 Data management functions 32

7.1 Specifying remote locations . 32

7.2 Data movement . 32

7.3 General commands . 34

7.4 Finding data . 35

7.5 Using the StorageFactory service . 35

8 Metadata management functions 36

8.1 Basics . 36

8.2 Available commands . 37

9 Workflows 38

9.1 Introduction . 38

9.2 Command overview . 39

9.3 Basic use . 39

9.4 Workflow description format . 39

9.5 Managing workflow data . 39

9.6 Resuming a held workflow . 41

UNICORE Commandline Client: User Manual

10 Batch processing 41

10.1 Options . 41

10.2 Performance tuning options . 42

10.3 Resource selection in batch mode . 42

11 The UCC shell 43

11.1 Changing property settings . 43

11.2 Running an external command . 44

11.3 Exiting the shell . 44

12 Sharing resources 44

12.1 Editing ACLs . 45

12.2 Permission levels . 45

13 UCC for site administrators 45

13.1 Security considerations . 46

13.2 Admin commands . 46

13.3 Listing jobs, sites, . 49

13.4 Low-level operations . 50

14 Scripting 50

14.1 Script context . 50

14.2 Examples . 51

15 Frequently asked questions 51

15.1 Configuration . 51

15.2 Usage . 52

UNICORE Commandline Client: User Manual 1

1 Overview

The UNICORE Commandline client (UCC) is a full-featured client for the UNICORE mid-
dleware. UCC has client commands for all the UNICORE basic services and the UNICORE
workflow system.

It offers the following functions

• Job submission and management

• Batch mode job submission and processing with many performance tuning options

• Data movement (upload, download, server-to-server copy, etc) using the UNICORE storage
management functions and available data transfer protocols

• Storage functions (ls, mkdir, . . .) including creation of storage instances via storage factories

• Support for UNICORE workflow submission and management

• Support for the UNICORE metadata system

• Support for sharing UNICORE resources via ACLs

• Information about the available services is provided via the "system-info" command

• Various utilities like a "shell" mode, low-level REST API operations and others

• Extensibility through custom commands and the possibility to run scripts written in the
Groovy programming language

• Built-in help

Starting with Version 8 of the UCC, the UNICORE REST API is used exclusively for client-
server communications.

For more information about UNICORE visit https://www.unicore.eu.

2 Installation and configuration

2.1 Prerequisites

To run UCC, you need a Java runtime version 8 or later (OpenJDK preferred).

2.2 Download

You can get the latest version from the SourceForge UNICORE download page.

https://www.unicore.eu
https://sourceforge.net/projects/unicore/files/Clients/Commandline%20Client

UNICORE Commandline Client: User Manual 2

2.3 Installation and configuration

To install, unpack the distribution in a directory of your choice. It’s a good idea to add the bin/
directory to your PATH variable,

$> export PATH=$PATH:<UCC_HOME>/bin

where UCC_HOME is the directory you installed UCC in.

Note
Windows only Please do not install UCC into a directory containing spaces such as "Program
files".
Also avoid long path names, this can lead to errors due to the Windows limit on command line
length.
Setting environment variables can be done (as administrator) using the Control
panel→System→Extras panel.

Though you can specify your keystore location and other parameters on the commandline, it
is easiest to place this information in a file, so that you do not have to key in this information
repeatedly.

2.4 Preferences file

UCC checks by default whether the file <userhome>/.ucc/preferences exists, and reads it.

A minimal example that specifies username, password and your preferred UNICORE registry
URL would look as follows:

registry=<your registry>

authenticationMethod=username
username=demouser
password=test123

truststore.type=directory
truststore.directoryLocations.1=<path to CA file(s)>

client.serverHostnameChecking=NONE

Please refer to Section 4 for a full description of available options.

Note
If you are worried about security, and do not want specify the password: UCC will ask for it if
it is not given in the preferences or on the commandline.

UNICORE Commandline Client: User Manual 3

Note
Windows only The preferences are usually searched in the "c:\Users\<user_name>\.ucc"
folder.
To create the .ucc folder, you might have to use the command prompt "mkdir" command.
When specifying paths in the preferences file, the backslash \ character needs to be written
using an extra backslash \\

For example, if you are using a local UNICORE installation for testing, you could use

registry=https://localhost:8080/DEMO-SITE/rest/core/registries/ ←↩
default_registry

Note
If you wish to change the default property file location, you can set a Java VM property in the
UCC start script, for example by editing the command that starts UCC

java -Ducc.preferences=<preferences location>

2.5 Logging

UCC writes some messages to the console, more if you choose the verbose mode (-v option). If
you need real logging (e.g. when using the batch mode), you can edit the <UCC_HOME>/conf/logging.properties
file, which configures the Log4J logging infrastructure used in UNICORE.

2.6 Installing UCC extensions

UCC can be extended with additional commands. It is enough to copy the libraries (.jar files)
of the extension into a directory that is scanned by UCC: in general these are the UCC lib and
the ${HOME}/.ucc/lib directory.

2.7 Testing the installation

To test your UCC installation and to get information about the services available in the UNI-
CORE system you’re connecting to, do

$> ucc system-info -l -v

3 Getting started with UCC

Assuming you have successfully installed UCC, this section shows how to get going quickly.

UNICORE Commandline Client: User Manual 4

3.1 Getting help

Calling UCC with the "-h" option will show the available options. To get a list of available
commands, type

$> ucc -h

To get help on a specific command, type

$> ucc <command> -h

See also here for a list of common options.

3.2 Connecting

First, contact UNICORE and make sure you have access to some target systems.

$> ucc connect [options]

3.3 List available sites

Then, list the sites available to you using

$> ucc list-sites [options]

3.4 Running your first job

The UCC distribution contains samples that you can run. Let’s run the "date" sample. The "-v"
switch prints more info so you can see what’s going on.

$> ucc run [options] -v [UCC_HOME]/samples/date.u

Note
Look for UCC samples in the /usr/share/doc/unicore/ucc/samples directory,

This will run "date" on a randomly chosen site, and retrieve the output. To run on a particular
site, use the "-s" option to specify a particular target system.

options.html

UNICORE Commandline Client: User Manual 5

3.5 Listing your jobs

The command

$> ucc list-jobs

will print a list of jobs (actually their addresses) with their respective status (RUNNING, SUC-
CESSFUL, etc)

4 Common options to UCC

The following table lists the options understood by most UCC commands. Most commands
have additional options. You can always get a summary of all available options for a command
by calling UCC with the "-h" or "--help" option, for example

$> ucc run --help

Since it is not possible to give all the required options on the commandline, it is mandatory to
create a preferences file containing e.g. your settings for keystore, registry etc.

Table 1: Common options for the UCC

Option (short and long
form)

Description

-c,--configuration
<Properties_file>

Properties file containing your preferences. By default, a
file userhome/.ucc/preferences is checked.

-k,--authenticationMethod
<auth>

Authentication method to use (default: X509)

-o,--output
<Output_dir>

Directory for any output produced (default is the current
directory)

-r,--registry
<List_of_Registry_URLs>

The comma-separated list of URLs of UNICORE registries

-v,--verbose Verbose mode
-h,--help Print help message
-y,--with-timing Timing mode

4.1 User preferences

If you have multiple user IDs or are a member of multiple Unix Groups on the target system,
you may wish to control the user attributes that are used when invoking UCC.

Here is a list of options related to user attributes.

UNICORE Commandline Client: User Manual 6

Table 2: User attribute options

Option (short and long
form)

Description

-Z, --preference Select from your remote attributes (e.g. xlogin)

The preference option accepts multiple arguments of the form "<name>:<value>" where name

Table 3: User attribute options

Name Description
uid Remote login
pgid Primary group ID
supgids Secondary group IDs (comma-separated)
role UNICORE role (user, admin, . . .)
vo virtual organisation

4.2 Configuration file

By default, UCC checks for the existence of a file <userhome/.ucc/preferences> and reads set-
tings from there. As shown above, you can use a different file by specifying it on the comman-
dline using the "-c" option.

The configuration file can contain default settings for many commandline options, which are
given in the form <option name>=<value> where <option name> is the long form of the option.
The property values may contain variables in the form ${VAR_X}, which are automatically
replaced with the environmental variable values with the same name. Additionally a special
variable ${UCC_CONFIG} is recognized and is replaced with the absolute path of your con-
figuration file.

The most important part of configuration is how UCC should authenticate you to the UNICORE
server(s) and what server(s) should be trusted.

An overview of the available authentication options can be retrieved using

$> ucc help-auth

A minimal example for using the "quickstart" installation would be

registry=https://localhost:8080/DEMO-SITE/services/Registry?res= ←↩
default_registry

UNICORE Commandline Client: User Manual 7

authenticationMethod=username
username=demouser
password=test123

truststore.type=directory
truststore.directoryLocations.1=<path to CA file(s)>

Note
To protect your passwords, you should make the file non-readable by others, for example on
Unix using a command such as chmod 600 preferences

Note
If required passwords are not given in the properties file, they will be queried interactively.

4.3 Username and password authentication

To authenticate with username and password, set the following

authenticationMethod=username
username=<your remote username>
password=<your remote password>

4.4 Support for token based authentication

UCC has three different options for using token-based authentication

• via oidc-agent

• directly contact an OIDC server as an OIDC client (requires client ID and secret)

• specify the token directly as a config property

4.4.1 OIDC-Agent

UCC supports the oidc-agent tool that allows to interact with common OIDC servers to retrieve
new access tokens.

Please visit https://github.com/indigo-dc/oidc-agent for more information.

To configure oidc-agent, UCC supports the following properties

Options for oidc-agent Your config file would require at least:

authenticationMethod=oidc-agent
oidc-agent.account=<oidc-agent account to be used>

https://github.com/indigo-dc/oidc-agent

UNICORE Commandline Client: User Manual 8

4.4.2 OIDC Server

This is a low-level approach that requires the details on how to act as an OIDC client, you’ll
need at least an OIDC token endpoint, client ID and secret.

Table 4: Options for oidc-server

Property name Type Default
value /
mandatory

Description

oidc.authentication[BASIC,
POST]

BASIC How to authenticate (i.e.
send client id/secret) to the
OIDC server (BASIC or
POST).

oidc.clientID string - Client ID for authenticating
to the OIDC server.

oidc.clientSecret string - Client secret for
authenticating to the OIDC
server.

oidc.endpoint string mandatory
to be set

The OIDC server endpoint
for requesting a token

oidc.grantType string client_credentialsGrant type to request.
oidc.password string - Password used to log in. It

is suggested not to use this
option for security reasons.
If not given in
configuration, it will be
asked interactively.

oidc.username string - Username used to log in. If
not given in configuration,
it will be asked
interactively.

authenticationMethod=oidc-server
oidc.endpoint=<oidc server token endpoint>
oidc.username=...
oidc.password=...

4.4.3 Bearer token in config

Last not least, if you have a Bearer token via some other means, you can directly put the token
into your config file

UNICORE Commandline Client: User Manual 9

authenticationMethod=bearer-token
token=...

4.5 Certificate-based authentication

For UNICORE installations that support (or even require) client certficates for authentication,
set

authenticationMethod=X509

credential.path=<your keystore>
credential.password=XXXXXXX

Table 5: Credential properties

Property name Type Default
value /
mandatory

Description

credential.path filesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

credential.format [jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

credential.passwordstring - Password required to load
the credential.

credential.keyPathstring - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

UNICORE Commandline Client: User Manual 10

Table 5: (continued)

Property name Type Default
value /
mandatory

Description

credential.keyPasswordstring - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

credential.keyAliasstring - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

4.6 Truststore options

In general you’ll want a truststore directory (or file) as well as a truststore file (or directory)
containing trusted certificates.

A full list of options related to truststore management is available in the following table. You
can also get them via the online help using

Table 6: Truststore properties

Property name Type Default
value /
mandatory

Description

truststore.allowProxy[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

truststore.type [keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

truststore.updateIntervalinteger number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

UNICORE Commandline Client: User Manual 11

Table 6: (continued)

Property name Type Default
value /
mandatory

Description

--- Directory type settings ---
truststore.directoryConnectionTimeoutinteger number 15 Connection timeout for

fetching the remote CA
certificates in seconds.

truststore.directoryDiskCachePathfilesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

truststore.directoryEncoding[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER. Note that the
PEM file can contain
arbitrary number of
concatenated,
PEM-encoded certificates.

truststore.directoryLocations.*list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
truststore.keystoreFormatstring - The keystore type (jks,

pkcs12) in case of truststore
of keystore type.

truststore.keystorePasswordstring - The password of the
keystore type truststore.

truststore.keystorePathstring - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---

UNICORE Commandline Client: User Manual 12

Table 6: (continued)

Property name Type Default
value /
mandatory

Description

truststore.opensslNewStoreFormat[true, false] false In case of openssl
truststore, specifies whether
the trust store is in openssl
1.0.0+ format (true) or
older openssl 0.x format
(false)

truststore.opensslNsMode[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDPMA_GLOBUSIn case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

truststore.opensslPathfilesystem path /etc/grid-security/certificatesDirectory to be used for
opeenssl truststore.

--- Revocation settings ---
truststore.crlConnectionTimeoutinteger number 15 Connection timeout for

fetching the remote CRLs
in seconds (not used for
Openssl truststores).

truststore.crlDiskCachePathfilesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

UNICORE Commandline Client: User Manual 13

Table 6: (continued)

Property name Type Default
value /
mandatory

Description

truststore.crlLocations.*list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

truststore.crlMode[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

truststore.crlUpdateIntervalinteger number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

truststore.ocspCacheTtlinteger number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

truststore.ocspDiskCachefilesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

truststore.ocspLocalResponders.<NUMBER>list of
properties with
a common
prefix

- Optional list of local OCSP
responders

truststore.ocspMode[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAILABLEGeneral OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

truststore.ocspTimeoutinteger number 10000 Timeout for OCSP
connections in miliseconds.

truststore.revocationOrder[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

UNICORE Commandline Client: User Manual 14

Table 6: (continued)

Property name Type Default
value /
mandatory

Description

truststore.revocationUseAll[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

4.7 Trust store examples

Here are some examples for commonly used trust store configurations.

Most commonly used is a directory (with a minimal set of options)

truststore.type=directory
truststore.directoryLocations.1=/trust/dir/*.pem

Java keystore used as a trust store:

truststore.type=keystore
truststore.keystorePath=/some/dir/truststore.jks
truststore.keystoreFormat=JKS
truststore.keystorePassword=xxxxxx

OpenSSL trust store

truststore.type=openssl
truststore.opensslPath=/truststores/openssl
truststore.opensslNsMode=EUGRIDPMA_GLOBUS_REQUIRE
truststore.updateInterval=1234
truststore.crlMode=IF_VALID

4.8 Client options

The configuration file may also contain low-level options, for example if you need to specify
connection timeouts, http proxies etc.

UNICORE Commandline Client: User Manual 15

Table 7: Client options

Property name Type Default
value /
mandatory

Description

client.digitalSigningEnabled[true, false] true Controls whether signing of
key web service requests
should be performed.

client.httpAuthnEnabled[true, false] false Whether HTTP basic
authentication should be
used.

client.httpPasswordstring empty
string

Password for use with
HTTP basic authentication
(if enabled).

client.httpUser string empty
string

Username for use with
HTTP basic authentication
(if enabled).

client.inHandlers string empty
string

Space separated list of
additional handler class
names for handling
incoming WS messages

client.maxWsCallRetriesinteger number 3 Controls how many times
the client should try to call
a failing web service. Note
that only the transient
failure reasons cause the
retry. Note that value of 0
enables unlimited number
of retries, while value of 1
means that only one call is
tried.

client.messageLogging[true, false] false Controls whether messages
should be logged (at INFO
level).

client.outHandlersstring empty
string

Space separated list of
additional handler class
names for handling
outgoing WS messages

client.securitySessions[true, false] true Controls whether security
sessions should be enabled.

UNICORE Commandline Client: User Manual 16

Table 7: (continued)

Property name Type Default
value /
mandatory

Description

client.serverHostnameChecking[NONE,
WARN, FAIL]

WARN Controls whether server’s
hostname should be
checked for matching its
certificate subject. This
verification prevents
man-in-the-middle attacks.
If enabled WARN will only
print warning in log, FAIL
will close the connection.

client.sslAuthnEnabled[true, false] true Controls whether SSL
authentication of the client
should be performed.

client.sslEnabled [true, false] true Controls whether the
SSL/TLS connection mode
is enabled.

client.wsCallRetryDelayinteger number 10000 Amount of milliseconds to
wait before retry of a failed
web service call.

--- HTTP client settings ---
client.http.allow-chunking[true, false] true If set to false, then the

client will not use HTTP
1.1 data chunking.

client.http.connection-close[true, false] false If set to true then the client
will send connection close
header, so the server will
close the socket.

client.http.connection.timeoutinteger number 20000 Timeout for the connection
establishing (ms)

client.http.maxPerRouteinteger number 6 How many connections per
host can be made. Note:
this is a limit for a single
client object instance.

client.http.maxRedirectsinteger number 3 Maximum number of
allowed HTTP redirects.

client.http.maxTotalinteger number 20 How many connections in
total can be made. Note:
this is a limit for a single
client object instance.

client.http.socket.timeoutinteger number 0 Socket timeout (ms)
--- HTTP proxy settings ---

UNICORE Commandline Client: User Manual 17

Table 7: (continued)

Property name Type Default
value /
mandatory

Description

client.http.nonProxyHostsstring - Space (single) separated list
of hosts, for which the
HTTP proxy should not be
used.

client.http.proxy.passwordstring - Relevant only when using
HTTP proxy: defines
password for authentication
to the proxy.

client.http.proxy.userstring - Relevant only when using
HTTP proxy: defines
username for authentication
to the proxy.

client.http.proxyHoststring - If set then the HTTP proxy
will be used, with this
hostname.

client.http.proxyPortinteger number - HTTP proxy port. If not
defined then system
property is consulted, and
as a final fallback 80 is
used.

client.http.proxyTypestring HTTP HTTP proxy type: HTTP or
SOCKS.

4.9 Other options

The following table lists other options, that are more rarely used.

Table 8: Other options for the UCC

Property name Description
blacklist Comma separated patterns for sites / URLs to ignore
contact-registry Do not attempt to contact the registry, even if one is

configured

UNICORE Commandline Client: User Manual 18

5 Running jobs

5.1 Introduction

The UCC can run jobs specified in the JSON job description format that is used by the UNI-
CORE REST API, plus a few extensions related to handling of local files, submission options
etc. See Section 6 for all the details.

In the following it is assumed that you have UCC installed Section 2 and tried some examples
Section 3 .

For example, assume the file "myjob.u" looks as follows

{
"ApplicationName": "Date",
"ApplicationVersion": "1.0"

}

To run this through UCC, issue the following command

ucc run myjob.u

This will submit the job, wait for completion, download the stdout and stderr files, and place
them in your default output directory. The run command has a number of options, to see all the
possibilities use the built-in help:

ucc run -h

5.1.1 Controlling the output location and file names

Output files will be placed in the directory given by the "-o" option, if not given, the current
directory is used. Also, file names will be put into a subdirectory named as the job id, to prevent
accidental overwriting of existing files. This behaviour can be changed using the "-b" option.
When "-b" is given on the command line, no subdirectory will be created.

5.1.2 Specifying the site

In the example above, a random site will be chosen to execute the job. To control it, you can
use the "-s" option. This will accept the name of a target system. The target systems available
to you can be listed by

ucc list-sites

UNICORE Commandline Client: User Manual 19

5.1.3 Accessing a job’s working directory

Using the UCC’s data management functions, the job working directory can be accessed at any
time after job submission. Please see section Section 7 for details.

5.2 Options overview

The following options are available when running jobs (see also the general options overview
in Section 4.

Table 9: Job submission options for UCC

Option (Short and long
form)

Description

-a,--asynchronous Run asynchronously
-b,--brief Do not create a sub-directory for output files
-B,--broker Select the type of resource broker to use (see run -h for a

list)
-d,--dryRun Only show candidate sites, but do not submit the job
-s,--sitename
<SITE>

Site where the job shall be run

-S,--schedule
<Time>

Schedule the submission of the job at the given time

-o,--output
<Output_dir>

Directory for any output produced (default is the current
directory)

-O,--stdout
<stdout_name>

specify a name for the exported standard out (by default:
stdout)

-E,--stderr
<stderr_name>

specify a name for the exported standard error (by default:
stderr)

5.3 Resource selection

In general the user selects the execution site.

If no site is specified upon submission, UCC will select a matching site, where the requirements
(resources, applications) are met.

In case there are other types of brokers available, they can be selected using the "-B" or "--
broker" option.

• LOCAL (default): brokering is done by UCC itself

To see if other brokers exist, execute "ucc run -h", the available options will be listed in the help
for the "-B" option.

UNICORE Commandline Client: User Manual 20

5.4 Processing jobs asynchronously

In case of long-running jobs, you will want to run the job asynchronously, i.e. just submit the
job, stage in any files and start it, in order to get the results later. UCC supports this, of course.
The basic idea is that when submitting a job in asynchronous mode, a job descriptor file is
written that contains the job’s address, and any information about export files.

5.4.1 Asynchronous submission

Use the "-a" flag when submitting a job

ucc run -a <job file>

This will submit the job, stage-in any local files, start the job and exit. A job descriptor file
(ending in ".job") will be written to your configured output directory.

5.4.2 Get the status of particular jobs

The command

ucc job-status <job_desc> <job_desc_2> ...

will retrieve the status of the given jobs. If not given on the command line, a job ID will be read
from the console.

5.4.3 Download results

To get stdout, stderr and other files you have marked for export in your job description, do

ucc get-output -o <outdir> <job_desc>

Here, the option "-o" specifies the directory where to put the output, by default the current
directory is used. As before, the job address can also be read from the console.

5.4.4 Referencing a job by its URL (endpoint address)

In case you want to check on a job not submitted through UCC, or in case you do not have the
job descriptor file any more, you can also refer to a job given its URL. The "list-jobs" command
will produce a list of all job URLs that you can access.

Note that in this case UCC will only retrieve stdout and stderr files. To download other result
files, you’ll have to use the data movement functions described in Section 7.

jobs.html

UNICORE Commandline Client: User Manual 21

5.4.5 Scheduling job submission to the batch system

Sometimes a user wishes to control the time when a job is submitted to the batch queue, for
example because she knows that a certain queue will be empty at that time.

To schedule a job, you can either use the "-S" option to the ucc "run" command:

ucc run -S "12:24" ...

Alternatively, you can specify the start time in your job file using the "Not before" key word

{

"Not before": "12:30",

}

In both cases, the specified start time can be given in the brief "HH:mm" (hours and minutes)
format shown above, or in the full ISO 8601 format including year, date, time and time zone:

{

"Not before": "2011-12-24T12:30:00+0200",

}

5.5 Executing a command

If you just want to execute a simple command remotely (i.e. without data staging, resource
specifications etc), you can use the "exec" command.

This will run the given command remotely (similarly to "ssh"), and print the output to the
console. You can specify the site with the "-s" option. If you do not specify the site, a random
site will be chosen.

UNICORE will run the command on the login node, it will not be submitted to the batch system.

For example, try

ucc exec /bin/date

Watch out to properly escape any arguments, in order not to interfere with the arguments to
UCC.

6 Job description format

UNICORE uses a JSON format that allows you to specify the application or executable you
want to run, arguments and environment settings, any files to stage in from remote servers or
the local machine and any result files to stage out.

UNICORE Commandline Client: User Manual 22

Several complete job samples can be found in the "samples" directory of the distribution. On
Linux, check also the /usr/share/unicore/ucc/samples directory.

Comments are (inofficially!) possible using the "#" hash character, as in Unix shell scrips.

Note
Note: quotes "" are needed around the keys and values in case special characters (like : or
/ ") appear, if in doubt use quotes!

To view an example job showing most of the available options, run

ucc run -H

(most of the options shown are not mandatory, of course)

Note
UCC also accepts jobs in the JSDL format that is used internally in UNICORE. To do this, use
the "-j" option when submitting the job.

Usually, a UNICORE job file describe a single batch job on the target system. However there
is a feature called "parameter sweep" which leads to the creation of multiple batch jobs from
a single "template" job. UCC can also create these "sweep jobs", as described in the relevant
parts of the job description. Note that a "sweep job" still is treated as a single job by UNICORE.
Sweep jobs are very useful if you need to run jobs that are highly similar, and only differ by a
parameter setting or even by a different input file.

6.1 Overview

UNICORE’s job description consists of multiple parts

• an Imports section listing data to be staged in to the job’s working directory from remote
storage locations or the client’s file system

• pre-processing

• a section describing the main executable

• post-processing

• an Exports section listing result files to be staged out to remote storage locations

• a Resources section stating any resource requirements like job runtime or number of nodes

• a number of additional elements for setting the job name, or defining tags for the job

Here is a table listing the supported elements, these will be described in more detail below.

UNICORE Commandline Client: User Manual 23

Table 10: UNICORE JSON job description

Tag Type Description
ApplicationName String Application name
ApplicationVersion String Application version
Executable String Command line
Arguments List of strings Command line arguments
Environment Map of strings Environment values
Parameters Map Application parameters
Optional IgnoreNonZeroExitCode "true"/"false"
Don’t fail the job if app
exits with non-zero exit
code (default: false)
User precommand String Pre-processing
RunUserPrecommandOnLoginNode"true"/"false" Pre-processing is done on

login node (default: true)
User postcommand String Post-processing
RunUserPostcommandOnLoginNode"true"/"false" Post-processing is done on

login node (default: true)
RunUserPostcommandOnLoginNode"true"/"false" Post-processing is done on

login node (default: true)
Resources Map The job’s resource requests
Project String Accounting project
Project String Accounting project
Imports List of imports Stage-in / data import
Exports List of exports Stage-out / data export
Exports List of exports Stage-out / data export
Job type normal, interactive Whether to run the job via

the batch system (normal,
default) or on a login node
(interactive)

Login node String For interactive jobs, select
a login node (by name, as
configured server side.
Wildcards * and ? can be
used)

Tags List of strings Job tags
Notification String URL to send job status

change notifications to (via
HTTP POST)

User email String User email to send
notifications to (if the batch
system supports it)

Site String UNICORE site name to run
the job at (only applicatible
if using a broker!)

UNICORE Commandline Client: User Manual 24

Table 10: (continued)

Tag Type Description
Name String Job name

6.2 Specifying the executable or application

You can specify a UNICORE application by name and (optional) version, or using a (machine
dependent) path to an executable file.

{
"ApplicationName": "Date",
"ApplicationVersion": "1.0",

}

Note the comma-separation and the curly braces. To directly call an executable,

{
"Executable": "/bin/date",

}

6.3 Arguments and Environment settings

Arguments and environment settings are specified using a list of String values. Here is an
example.

{

"Executable": "/bin/ls",

"Arguments": ["-l", "-t"],

"Environment": ["PATH=/bin:$PATH", "FOO=bar"] ,

}

6.3.1 Argument sweeps

To create a sweep over an Argument setting by replacing the value by a sweep specification.
This can be either a simple list:

UNICORE Commandline Client: User Manual 25

"Arguments": [
{ "Values": ["-o 1", "-o 2", "-o 3"] },

],

or a range:

"Arguments": {
"-o", { "From": "1", "To": "3", "Step" : "1" },

},

where the From, To and Step parameters are floating point or integer numbers.

6.4 Application parameters

In UNICORE, parameters for applications are often transferred in the form of environment
variables. For example, the POVRay application has a large set of parameters to specify image
width, height and many more. In UCC, you can specify these parameters in a very simple way
using the "Parameters" keyword:

{
"ApplicationName": "POVRay",

"Parameters": {
"WIDTH": "640",
"HEIGHT": "480",
"DEBUG": "",

},

}

Note that an "empty" parameter (which does not have a value) needs to be written with an
explicit empty string due to the limitations of the JSON syntax.

6.4.1 Parameter sweeps

You can sweep over application parameters by replacing the parameter value by a sweep speci-
fication. The replacement can be either a simple list:

"Parameters": {
"WIDTH": { "Values": ["240", "480", "960"] },

},

or a range:

"Parameters": {
"WIDTH": { "From": "240", "To": "960", "Step": "240" },

},

where the From, To and Step parameters are floating point or integer numbers.

UNICORE Commandline Client: User Manual 26

6.5 Job data management

In general your job will require data files, either from your client machine, or from some remote
location. An important concept in UNICORE is the job’s workspace, which is the default
location into which files are placed. The same applies to result files: by default, files will be
downloaded from the job’s workspace.

However, other remote storage locations are supported, too.

The remote location can be given as a full UNICORE URI, or using the more user friendly (but
slower) "unicore://" notation. Read more on remote locations in Section 7.

Local files can be given as an absolute or relative path; in the latter case the configured output
directory will be used as base directory.

6.5.1 Importing files into the job workspace

To import files from your local computer or from remote sites to the job’s working directory
on the remote UNICORE server, there’s the "Imports" keyword. Here is an example Imports
section which demonstrates some of the possibilities.

{

"Imports": [

#
import a local file from the client machine
into the job workspace
#
{ "From": "/work/data/fileName", "To": "fileName" },

#
import a set of local files from the client machine
into the job workspace
#
{ "From": "/work/data/pdf/*.pdf", "To": "/" },

#
import a remote file from a UNICORE storage. The real address
will be resolved by UCC
#
{ "From": "unicore://DEMO-SITE/Home/testfile", "To": "testfile" },

#
import a remote file from a UNICORE storage using the UFTP ←↩

protocol
#
{ "From": "UFTP:https://gw:8080/DEMO-SITE/services/ ←↩

StorageManagement?res=Home#testfile",
"To": "testfile" },

UNICORE Commandline Client: User Manual 27

create a symlink from a file on the compute machine to the job ←↩
workspace

{ "From": "link:/work/data/testfile", "To": "linked-file" },

copy a file on the compute machine to the job workspace
{ "From": "link:/work/data/testfile", "To": "copied-file" },

],

}

If for some reason an import fails, but you want the job to run anyway, there is a flag "FailOn-
Error" that can be set to "false" :

"Imports": [

#
do not fail on errors for this import:
#
{ "From": "/work/data/fileName",
"To": "fileName",
"FailOnError": "false",

},

],

Note
UCC supports simple wild cards ("*" and "?") for importing and exporting files

Supported protocols for imports

• file:// : copy file(s) from the remote machine into the job dir

• link:// : symlink file/dir from the remote machine into the job dir

• unicore:// : resolve location pointing to some UNICORE server

Using "inline" data to import a file into the job workspace

For short import files, it can be convenient to place the data directly into the job descrition,
which can speed up and simplify the job submission process.

Here is an example:

UNICORE Commandline Client: User Manual 28

"Imports": [
{ "From": "inline://dummy",
"To": "uspaceFileName",
"Data": "this is some test data", },

]

The "From" URL has to start with "inline://"

Sweeping over a stage-in file

You can also sweep over files, i.e. create multiple batch jobs that differ by one imported file. To
achieve this, replace the "From" parameter by list of values, for example:

"Imports": [

{ "From": ["unicore://DEMO-SITE/Home/work/data/file1",
"unicore://DEMO-SITE/Home/work/data/file2",
"unicore://DEMO-SITE/Home/work/data/file3",

],
"To": "fileName", },

Note that only a single stage-in can be sweeped over in this way, and that this will not work
with files imported from your local client machine.

6.5.2 Exporting result files from the job workspace

To export files from the job’s working directory to your local machine or to some remote storage,
use the "Exports" keyword. Here is an example Exports section that specifies two exports:

{

"Exports": [
#this exports all png files to a local directory
{ "From": "*.png", "To": "/home/me/images/" },

#this exports a single file to a to local directory
#failure of this data transfer will be ignored
{ "From": "error.log", "To": "/home/me/logs/error.log", " ←↩

FailOnError": "false", },

#this exports to a UNICORE storage
{ "From": "stdout", "To": "unicore://DEMO-SITE/Home/results/ ←↩

myjob/stdout" },

]

}

UNICORE Commandline Client: User Manual 29

As a special case, UCC also supports downloading files from other UNICORE storages using
the Exports keyword:

{
"Exports": [
#this exports a file from a UNICORE storage
{ "From": "unicore://DEMO-SITE/Work/somefile", "To": "/home/me/ ←↩

somefile" },
]

}

The protocol to be used for imports and exports can be chosen using the "Preferred Protocols"
entry, containing a space-separated list of protocols:

{

"Preferred protocols": "UFTP BFT",

}

If not specified or not available at the remote site, BFT will be used.

6.5.3 Specifying credentials for data staging

Some data staging protocols supported by UNICORE require credentials such as username and
password. To pass username and password to the server, the syntax is as follows

{
"Imports": [
{ "From": "ftp://someserver:25/some/file", "To": "input_data",

"Credentials": { "Username": "myname", "Password": " ←↩
mypassword" },

},
]

}

and similarly for exports.

Servers 7.9.0 and later also support OAuth Bearer token for HTTP data transfers.

{
"Imports": [
{ "From": "https://someserver/some/file", "To": "input_data",

"Credentials": { "BearerToken": "some_token" },
},

]
}

You can leave the token value empty, "BearerToken": "", if the server already has your
token by some other means.

UNICORE Commandline Client: User Manual 30

6.5.4 Redirecting standard input

If you want to have your application or executable read its standard input from a file, you can
use the following

"Stdin": "filename",

then the standard input will come from the file named "filename" in the job working directory.

6.6 Resources

A job definition can have a Resources section specifying the resources to request on the remote
system. For example

"Resources": {

"Runtime": "12h",

"Nodes": "8",

"Queue" : "fast",
}

UNICORE has the following built-in resource names.

Table 11: UNICORE built-in resources

Resource name Description
Runtime Job runtime (wall time) (in seconds, append "min", "h", or

"d" for other units)
Queue Batch system queue / partition to use
Nodes Number of nodes
CPUs Total number of CPUs
CPUsPerNode Number of CPUs per node
Memory Memory per node
Reservation Batch system reservation ID
NodeConstraints Batch system node constraints

In addition, sites may define custom resources, which you can use, too.

UNICORE Commandline Client: User Manual 31

6.7 Miscellaneous options

6.7.1 Site name

To specify on which site (if available) the job should be run (e.g. for UCC’s batch mode)

"Site": "DEMO-SITE",

If you do not specifiy anything UCC will select a site that will match your requirements (at least
those that UCC checks for). You can also set the site during job submission as an option to "ucc
run . . . ".

6.7.2 Specifying a project

If the system you’re submitting to requires a project name for accounting purposes, you can
specify the account (or project) you want to charge the job to using the "Project" tag:

"Project" : "my_project",

6.7.3 Job tags

To set job tags that help you find / filter jobs later, use the "Tags" keyword

"Tags": ["production", "train1", "my_tag"],

6.7.4 Specifying a URL for receiving notifications

The UNICORE/X server can send out notifications when the job enters the RUNNING and/or
DONE state.

To enable this, add the URL of the receiving service to your job:

"Notification" : "https://your-service-url",

UNICORE will send an authenticated HTTPS POST message to this URL, with JSON content.

"href" : "https://unicore-url/rest/core/jobs/job-uuid",
"status" : "RUNNING",
"statusMessage" : ""

The "status" field will be RUNNING when the user application starts executing, and "SUC-
CESSFUL" / "FAILED" when the job has finished.

"href" : "https://unicore-url/rest/core/jobs/job-uuid",
"status" : "SUCCESSFUL",
"statusMessage" : "",
"exitCode" : 0

UNICORE Commandline Client: User Manual 32

Do not expect "realtime" behaviour here, as UNICORE has a certain delay (typically 30 to 60
seconds, depending on the server configuration) until "noticing" job status changes on the batch
system.

6.7.5 Specifying the user email for batch system notifications

Some batch systems support sending email upon completion of jobs. To specify your email, use

"User email" : "foo@bar.org" ,

6.7.6 Specifying the job name

The job name can be set simply by

"Name": "Test job",

7 Data management functions

UCC offers access to all the data management functions in UNICORE. You can upload or
download data from a remote server, initiate a server-to-server transfer, create directories and
so on.

7.1 Specifying remote locations

Remote locations are via URIs that includes protocol, storage server (host/port), site name, and
filename, for example

BFT:https://mygateway:8080/SITE/rest/core/storages/HOME/files/ ←↩
my_file

which specifies a file named "/my_file" on the storage instance "https://mygateway:8080/SITE/rest/core/storages/HOME",
using the BFT protocol.

Paths are always relative to the storage root, not the root of the actual file system.

The protocol is optional, and will default to "BFT" if not given.

7.2 Data movement

7.2.1 cp

The cp command is a generic command for copying source file(s) to a target destination, where
source and target can be remote locations or files on the local machine. Wild card characters *
and ? are supported.

UNICORE Commandline Client: User Manual 33

Examples for client-server transfers:

ucc cp data/*.pdf https://server/rest/core/storages/SHARE/files/ ←↩
pdfs

ucc cp https://server/rest/core/storages/SHARE/files/pdfs .

The "-R" option allows to choose whether subdirectories are to be copied, too.

The "-X" option allows to resume a previous transfer. Missing data will be appended to an
existing target file (if the chosen protocol supports it).

Examples for server-server transfer:

ucc cp https://server/rest/core/storages/SHARE/files/*.pdf \
https://otherserver/rest/core/storages/WORK/data/

For server-to-server transfers, the cp command supports several additional options.

The "-S" option allows to schedule a transfer for a certain time. For example

ucc cp -S "23:00" ...

The format is simply "HH:mm" (hours and minutes). Alternatively you can give the time in the
full ISO 8601 format including year, date, time and time zone:

ucc cp -S "2011-12-24T12:30:00+0200" ...

Another useful option is "-a" which will execute the server-server transfer asynchronously, i.e.
the client will not wait for the transfer to finish.

7.2.2 copy-file-status

This will print the status of the given data transfer. As argument, it expects a file name contain-
ing the transfer reference, or directly the reference.

Example (for Unix) which captures the reference into a shell variable:

export ID=$(ucc cp -a ...
ucc copy-file-status $ID

7.2.3 Specifying the file transfer protocol

To use a different protocol from the default BFT, you can use the "-P" option to specify your
preferred protocol. UCC will try to match them with the capabilities of the storage and use
the first match. Your preferred protocol can also be listed in your preferences file using the
"protocols" key:

protocols=UFTP

UNICORE Commandline Client: User Manual 34

Note
If necessary, you can specify additional filetransfer options in your preferences file as well.
For example, to use the UFTP protocol you may need to specify the client host address and
the number of parallel streams explicitely:

uftp.client.host=your_client_ip_address
uftp.streams=2
encrypt data (at the cost of performance)
uftp.encryption=true
compress data
uftp.compression=true

Use the special value "all" to enable all available client IP addresses for UFTP.

uftp.client.host=all

You can also override the UFTP server host, which can be useful in case the UFTP server is
accessible via multiple network interfaces:

uftp.server.host=myhost.com

UCC will try to use reasonable defaults for any missing parameters.

7.3 General commands

7.3.1 mkdir

This will create a directory (including required parent directories) remotely.

Example

ucc mkdir https://mygateway:8080/SITE/rest/core/storages/HOME/files ←↩
/pdfs

7.3.2 rm

This will remove a file or directory remotely. By default, UCC will ask for a confirmation.
Use the "--quiet" or "-q" option to disable this confirmation (e.g. when using this command in
scripts).

Example

ucc rm https://mygateway:8080/SITE/rest/core/storages/HOME/files/ ←↩
pdfs

UNICORE Commandline Client: User Manual 35

7.3.3 rename

This will rename/move a remote file/directory on the same storage.

Examples

ucc rename https://mygateway:8080/SITE/rest/core/storages/HOME/ ←↩
files/data/foo1.pdf /files/data/foo2.pdf

will rename the file "foo1.pdf" to "foo2.pdf"

7.3.4 stat

This command shows full information on a certain file or directory. Add the "-m" flag to also
print user-defined metadata.

Example

ucc stat -m https://mygateway:8080/SITE/rest/core/storages/HOME/ ←↩
files/foo.txt

7.4 Finding data

7.4.1 ls

This will list a remote directory. Useful options are: "-l" (detailed output), "-H" (human-
friendly) and "-R" (recurse). Example:

ucc ls -l -H https://mygateway:8080/SITE/rest/core/storages/HOME/

If the storage supports metadata, you can get the metadata of a single file using "ls -l -m":

ucc ls -l -m https://mygateway:8080/SITE/rest/core/storages/HOME/. ←↩
bashrc

7.5 Using the StorageFactory service

UNICORE sites may allow users to dynamically create storage resources, which even can be
linked to special back-end systems like Apache HDFS, iRODS, or cloud storage like Amazon
S3.

You can find out if there are sites supporting this "StorageFactory" service either by running the
system-info -l command, or better using

$> ucc create-storage -i

UNICORE Commandline Client: User Manual 36

This will list the available StorageFactory services and also show which types of storage are
supported and how much space is left on each of them.

UCC supports creating storages via the create-storage command. The simple

$> ucc create-storage

will create a new storage resource using the default storage type at some site.

Usually you want to control at least where the storage is created. Additionally, the type of
storage and some parameters can be passed to UCC.

As an example, creating a storage of type "S3" would look like this

$> ucc create-storage -t S3 accessKey=... secretKey=...

You can also read parameters from a file. Say you have your S3 keys in a file s3.properties, then
you can use the following syntax

$> ucc create-storage -t S3 @s3.properties

You can also mix this with the normal key=value syntax, or mix it like this:

$> ucc create-storage -t S3 accessKey=@s3.accessKey secretKey=@s3. ←↩
secretKey

The last version key=@file causes just the value to be read from the named file.

8 Metadata management functions

UCC offers a simple interface to access the metadata management service in UNICORE.

8.1 Basics

The metadata functions are all accessed via a single UCC command metadata. The actual
operation to be performed is given with the "-C" (i.e. "command") option.

The storage to be operated upon is given using the "-s" option, alternatively the "-m" option can
be used to directly give the metadata service URL.

In addition to the URL, the name of the target file on the storage is required.

Metadata is represented in JSON format. The metadata operations usually read metadata from
a file (or write results to file), which is specified using the "-f" option.

In the following examples, <STORAGE> denotes the URL of a storage capable of handling
metadata.

UNICORE Commandline Client: User Manual 37

8.2 Available commands

8.2.1 creating metadata

To create metadata, a file in JSON format is required containing key-value pairs. For example,
edit the file "meta.json" to contain:

{
foo: bar

}

Say we have a file "test" on our storage, then you can create metadata as follows

ucc metadata -C create -f meta.json -s <STORAGE> /test

If you now look at the file with "ls -l -m",

ucc ls -l -m <STORAGE>/test

you should get something like this:

-rw- 3344 2011-06-27 22:32 /test
{
"foo": "bar",
"resourceName": "/test"

}

8.2.2 reading metadata

Apart from the "ls -l -m" used above, there is also an explicit "read" command, which can write
the metadata to a file as well.

ucc metadata -C read -s <STORAGE> /test -f out.json

The "-f" option is optional.

8.2.3 updating metadata

Using update, the given metadata is merged with any existing metadata. Say we have a file
x.json containing:

{
x: y

}

we can append this to the existing metadata

ucc metadata -C update -s <STORAGE> /test -f x.json

Check that the metadata has indeed been appended.

UNICORE Commandline Client: User Manual 38

8.2.4 deleting metadata

Explicitely deleting is also possible:

ucc metadata -C delete -s <STORAGE> /test

Check that the metadata has indeed been deleted.

8.2.5 searching

Searching requires a search string (according to the rules of Apache Lucene), and is triggered
by the "search" command:

ucc metadata -C search -q "foo" -s <STORAGE> /

8.2.6 triggering metadata extraction

To trigger the extraction of metadata on the server, use the "start-extract" command:

ucc metadata -C start-extract -s <STORAGE> /

In this case the "/" denotes the base path from which to start the extraction process.

9 Workflows

9.1 Introduction

UCC supports the UNICORE Workflow service and allows to submit workflows and manage
them.

The workflows are executed server-side, and UCC is used only for submitting, managing data
and getting results. UCC also provides helper features for dealing with the workflows’ in-
put/output data and parametrised workflow templates.

Note
Version 8.x of the Workflow service has changed a lot, and existing 7.x XML workflows will
need to be converted / refactored.

UNICORE Commandline Client: User Manual 39

9.2 Command overview

The following commands are provided. More details and examples follow below.

• workflow-submit : submit a workflow file

• workflow-control : abort or resume a running workflow

• list-workflows : list information about workflows

9.3 Basic use

To check the availability of the Workflow service in the configured registry, issue the following
command

ucc system-info -l

This should show at least an accessible Workflow service.

The distribution contains some example workflow files in the <[?]> directory that you can edit
and submit.

ucc workflow-submit yourworkflow.json

which will submit the workflow and print the address of the workflow to standard output. To
get the workflow status,

ucc list-workflows <workflow_address>

To list all your workflows, you can use the <[?]> command without an explicit workflow address

ucc list-workflows -l

9.4 Workflow description format

The JSON format used by that the Workflow service can be found here: JSON workflow de-
scription format

9.5 Managing workflow data

9.5.1 Importing local data for use by a workflow

If you have local files that need to be imported before starting the workflow, you can use a
normal UCC job file that contains only an "Imports" section:

https://unicore-dev.zam.kfa-juelich.de/documentation/workflow-8.0.0/workflow-manual.html#wf_dialect
https://unicore-dev.zam.kfa-juelich.de/documentation/workflow-8.0.0/workflow-manual.html#wf_dialect

UNICORE Commandline Client: User Manual 40

{
"Imports":
[
{ "From": "local_file_1", "To": "wf:workflow_file_name_1", },
{ "From": "local_file_2", "To": "wf:workflow_file_name_2", },

...
],

}

UCC will upload the local files to a remote storage (which you can specify) and automatically
register them with the workflow upon submission.

Your workflow JSON can then reference them as "wf:. . . " in the workflow activities.

You can also "manually" register files by adding in "inputs" section to your workflow JSON.

{
"inputs": {
"wf:infile1" : "remote_url_1",
"wf:infile2" : "remote_url_2",

},

}

9.5.2 Workflow templates

If the workflows contains a Template parameters section, the corresponding replacement
will be done by reading parameter values from the .u file. These so-called workflow templates
can be a very simple and safe way to make adjustments in complex workflows # before submis-
sion. As an example, consider the following workflow

{
"Template parameters": {

"SLEEPTIME": {
"type" : "INTEGER",
"default": "10",

}
},

"activities" : [
{

"id": "sleep1",
"job": {

"Executable": "sleep",
"Arguments": ["${SLEEPTIME}"],

},
},

],
}

UNICORE Commandline Client: User Manual 41

This introduces a parameter with default value "10".

When the workflow is submitted, you can specify a JSON file with the "-u" option, which will
be checked for a parameter named "SLEEPTIME".

{
"SLEEPTIME": "1",

}

and if present, the value will be replaced in the workflow.

9.6 Resuming a held workflow

A workflow in status "HELD" can be resumed using the "workflow-control resume" command.
If the workflow has variables / parameters, updated values can be sent with the resume com-
mand.

10 Batch processing

The batch command allows you to run many jobs without having to start UCC each time.
You can control how many jobs should go to which site. This allows efficient job processing,
while putting some load on the client machine. If you need to take the client offline, you
should consider using the workflow system instead, which also allows efficient high-throughput
processing.

Assume you have a bunch of jobs in UCC’s job description format (Section 6) stored in a
directory jobs. The output should go to a directory out. You can run them all through UCC
using a single invocation as follows:

ucc batch -i jobs -o out

As job files, UCC will accept files ending in ".u"

10.1 Options

You can run in "follow" mode, where UCC will watch the input directory, and will process new
files as they arrive.

ucc batch -f -i jobs -o out

UCC can also process JSDL files, to batch-process these, use the "-j" option:

ucc batch -j -i jobs -o out

UNICORE Commandline Client: User Manual 42

10.2 Performance tuning options

Getting the most performance out of UCC and the UNICORE installation can be a challenging
task. Sending too many jobs to a site might decrease throughput, sometimes the client machine
can be the limiting factor, etc.

You should experiment a bit to get the best performance for your specific setup. UCC has many
options available for tuning. Here is an overview.

Table 12: Tuning options for the UCC batch mode

Option (short and long
form)

Description

-K,--keep Do not delete finished jobs on the server. By default,
finished jobs are destroyed.

-m,--max
<MaxRunningJobs>

Limit on jobs submitted by UCC at one time (default: 100)

-t,--threads
<NumThreads>

Number of threads to be used for processing (default: 4)

-u,--update
<UpdateInterval>

Minimum time in milliseconds between status requests on a
single job (Default: 1000)

-R,--noResourceCheckDo not check if the necessary application is available on the
target system (will increase performance a bit)

-X,--noFetchOutcomeDo not fetch standard output and error
-S,--submitOnly Only submit the jobs, do not wait for them to finish
-M,--maxNewJobs Limit the number of job submissions (default: 100)
-s,--sitename Specify which site to use
-W,--siteWeights Specify a file containing site weights

10.3 Resource selection in batch mode

By default, the UCC batch mode will select a random site for running a job. You can modify
the selection in different ways.

• using the "-s" option or a "Site: <sitename>," entry in the job file, you can specify the site
directly

• use the "-W" option to specify a file containing site weights.

Say you have two sites where one site is a big cluster and the other a small cluster. To send
more jobs to the big cluster, you can use the site weights file,

UNICORE Commandline Client: User Manual 43

#example site weights file for use with "ucc batch -W ..."

BIG-CLUSTER = 100
SMALL-CLUSTER = 10

#send no jobs to this site
BAD-CLUSTER = 0

set default weight (for any sites not specified here)
UCC_DEFAULT_SITE_WEIGHT = 10

This would tell UCC to send 10 times more jobs to the "BIG-CLUSTER" site, and send no
jobs´to the "BAD-CLUSTER". All other sites would get weight "10", i.e. the same as "SMALL-
CLUSTER".

11 The UCC shell

If you want to run a larger number of UCC commands, the overhead of starting the Java VM or
checking the registry may become annoying. For this scenario, UCC offers a "shell" that allows
the user to enter UCC commands interactively.

It is started by

ucc shell <options>

If you want to process a list of commands from a file instead of typing them, you can start the
shell like this

ucc shell -f commandsfile

or on Unix you can use the redirection features

ucc shell < commandsfile

11.1 Changing property settings

To change a property setting in shell mode, you can use the set command. Without additional
arguments, current properties are listed:

ucc>set
registry=https://...
output=/tmp
...

To set one or more properties, add space separated key=value strings:

UNICORE Commandline Client: User Manual 44

ucc>set output=/work registry=https://....

You can also clear a property (set it to null) by using unset

ucc>unset registry

commands. You can use to make commands shorter and more readable. It’s also useful to
pre-set certain things in your preferences file.

For example

ucc> set S1=https://myserver/my_site/rest/core/storages/HOME
ucc> ls -l ${S1}

11.2 Running an external command

You can run an external command via the "system" shell command. For example

ucc> system vi job.u

11.3 Exiting the shell

To exit, type exit or press CTRL-D

12 Sharing resources

Accessing UNICORE resources (jobs, storages, . . .) is usually only possible when you "own"
the resource or when there are special server-side policies in place that allow you access.

Starting with server version 7.3, UNICORE supports ACLs on a per-service instance basis. This
means, that you can give other users access to your target systems, jobs, storages,

For example, you might have access to an S3 cloud storage via UNICORE, and you want to
securely share data on this resource. Or, you want to allow others to check job status, or even
allow them to abort jobs.

Note that to access actual files the permissions on file system level still need to match. Usually
this is achieved by using Unix groups.

UNICORE Commandline Client: User Manual 45

12.1 Editing ACLs

The ACLs are managed via the "share" command. Use the basic

ucc share <URL>

to showe the current ACL for the given resource, where "URL" is the full WSRF service URL
of the resource, e.g.

ucc share https://localhost:8080/DEMO-SITE/rest/core/storages/HOME

To add an ACL entry, use

ucc share ACE1 ACE2 ... <URL>

where "ACE" is an access control entry expressed in a simple format:

[read|modify]:[DN|VO|GROUP|UID]:[value]

For example to give "modify" permission to a user whose UNIX user id on the target system is
"test", you would use

ucc share modify:UID:test <URL>

To delete entries, use the "-d" option

ucc share -d modify:UID:test <URL>

To delete all entries, use the "-b" option

ucc share -b <URL>

12.2 Permission levels

The permissions controlled by ACLs are as follows

• read : access resource properties

• modify : perform actions e.g. job submission or creating a file export

Only the owner of a resource can edit the ACL or destroy the resource.

13 UCC for site administrators

UCC can be used for administrative and user support tasks, like checking server status, or
getting the full details of a user job.

UNICORE Commandline Client: User Manual 46

13.1 Security considerations

Usually, each UNICORE user has only access to his or her own resources (such as jobs). For
administrative use, you will need to aquire administrator privileges. There are two ways to
achieve this.

• create dedicated user credentials (e.g. a certificate) and map them to the role "admin" (in the
XUUDB, or whatever attribute source you are using). This method is recommended if you
want to remotely administrate UNICORE/X.

• use the server keystore (of the UNICORE/X server you want to administrate) as UCC key-
store. This will also give you administrator privileges. For this you will need to be logged on
to the UNICORE/X server, and UNICORE/X must accept certificate authentication.

13.2 Admin commands

UCC has dedicated commands for accessing the "AdminService" of a UNICORE/X container.
To get started, try

ucc admin-info -l

UCC will try to access the admin service on each availabe UNICORE/X server. For each server,
a list of statistical and performance data will be listed.

It will also list the available admin commands for each server, with a short description of their
parameters. For example, here is a sample output:

https://localhost:8080/DEMO-SITE/services/AdminService?res= ←↩
default_admin

Services:
TargetSystemFactoryService[1]
...

Monitors:
use.externalConnectionStatus.REST_UnitySAMLAuthenticator: OK
use.security.overview: ServerIdentity: CN=Demo UNICORE/X,O= ←↩

UNICORE,C=EU;Expires: Thu Sep 09 12:01:19 CEST 2032; ←↩
IssuedBy: CN=Demo CA,O=UNICORE,C=EU

....
Metrics:

use.externalConnectionStatus.REST_UnitySAMLAuthenticator: OK
use.rest.callFrequency: 0.016677196376660174
...

Available commands:
ShowJobDetails : parameters: jobID, [xnjsReference]
ShowServerUsageOverview : parameters: [clientDN]
ToggleResourceAvailability : ’resources’ - comma separated list ←↩

of IDs
ToggleJobSubmission : parameters: [message]
ToggleBESJobSubmission :

UNICORE Commandline Client: User Manual 47

To invoke a command, the "admin-runcommand" is used. It can take optional parameters.

13.2.1 Disabling/enabling job submission

For example, it is possible to disable/enable job submission to the server, using the ToggleJob-
Submission command, which can take an optional message:

ucc admin-runcommand ToggleJobSubmission message="Maintenance"

The service will reply:

SUCCESS, service reply: OK - job submission is disabled

If a user now tries to submit, she will receive an error message on submission. Running the
command again will re-enable the service.

ucc admin-runcommand ToggleJobSubmission message="Maintenance"
SUCCESS, service reply: OK - job submission is now enabled

13.2.2 Getting job details

To get the full job details (for example in user support), try

ucc admin-runcommand ShowJobDetails jobID=<unique_jobid>

for example

ucc admin-runcommand ShowJobDetails jobID=cdfdafc5-0274-464d-ac4a ←↩
-463f46c942fa

SUCCESS, service reply: Job information for cdfdafc5-0274-464d-ac4a ←↩
-463f46c942fa

{Info=Action ID : cdfdafc5-0274-464d-ac4a-463f46c942fa
Action type : JSDL
Status : DONE (trans.: none)
Result : SUCCESSFUL [Success.]
Owner : CN=Demo User,O=UNICORE,C=EU
Exec. Definition: <JobDefinition xmlns="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl">
<JobDescription>

<JobIdentification>
<JobName>Date</JobName>

</JobIdentification>
<Application>
<jsdl:POSIXApplication xmlns:jsdl="http://schemas.ggf.org/ ←↩

jsdl/2005/11/jsdl-posix">
<jsdl:Executable>/bin/date</jsdl:Executable>

</jsdl:POSIXApplication>

UNICORE Commandline Client: User Manual 48

</Application>
<Resources/>

</JobDescription>
</JobDefinition>
Orig. Definition: <JobDefinition xmlns="http://schemas.ggf.org/jsdl ←↩

/2005/11/jsdl">
<JobDescription>

<JobIdentification>
<JobName>Date</JobName>

</JobIdentification>
<Application>
<ApplicationName>Date</ApplicationName>
<POSIXApplication xmlns="http://schemas.ggf.org/jsdl/2005/11/ ←↩

jsdl-posix"/>
</Application>
<Resources/>

</JobDescription>
</JobDefinition>
Processing context: de.fzj.unicore.xnjs.ems. ←↩

ProcessingContext@4308cff0
Application Info: AppInfo for Date 1.0
Job log:
Thu Sep 08 09:25:03 CEST 2016: Created with ID cdfdafc5-0274-464d- ←↩

ac4a-463f46c942fa
Thu Sep 08 09:25:03 CEST 2016: Created with type ’JSDL’
Thu Sep 08 09:25:03 CEST 2016: Client: Name: CN=Demo User,O=UNICORE ←↩

,C=EU
Xlogin: uid: [schuller], gids: [addingOSgroups: true]
Role: user: role from attribute source
Security tokens: User name: CN=Demo User,O=UNICORE,C=EU
Consignor DN: CN=Demo User,O=UNICORE,C=EU
Delegation to consignor status: true, core delegation status: true
Message signature status: UNCHECKED
Client’s original IP: 127.0.0.1
Thu Sep 08 09:25:04 CEST 2016: Using default execution environment.
Thu Sep 08 09:25:04 CEST 2016: No staging in needed.
Thu Sep 08 09:25:04 CEST 2016: Status set to READY.
Thu Sep 08 09:25:04 CEST 2016: Status set to PENDING.
Thu Sep 08 09:25:04 CEST 2016: Incarnated resources: [CPUsPerNode ←↩

=1.0, MemoryPerNode=2.68435456E8, ArraySize=1, Nodes=1.0, ←↩
ArrayLimit=64, CPUTime=3600.0]

Thu Sep 08 09:25:04 CEST 2016: Command is:
#!/bin/sh
....
chmod u+x /bin/date 2> /dev/null
rm -f /opt/unicore-servers/FILESPACE/cdfdafc5-0274-464d-ac4a-463 ←↩

f46c942fa//UNICORE_SCRIPT_EXIT_CODE
/bin/date

echo $? > /opt/unicore-servers/FILESPACE/cdfdafc5-0274-464d-ac4a ←↩

UNICORE Commandline Client: User Manual 49

-463f46c942fa//UNICORE_SCRIPT_EXIT_CODE

Thu Sep 08 09:25:04 CEST 2016: TSI reply: submission OK.
Thu Sep 08 09:25:04 CEST 2016: Submitted to classic TSI as [←↩

schuller NONE] with BSSID=3269519504309
Thu Sep 08 09:25:13 CEST 2016: Exit code 0
Thu Sep 08 09:25:13 CEST 2016: Job completed on BSS.
Thu Sep 08 09:25:14 CEST 2016: Status set to DONE.
Thu Sep 08 09:25:14 CEST 2016: Result: Success.
Thu Sep 08 09:25:14 CEST 2016: Total: 10.01 sec., Stage-in: 0.05 ←↩

sec., Stage-out: 0.00 sec., Datamovement: 0 %}

Thus you can get a full view of what the user submitted and what was executed.

13.3 Listing jobs, sites, . . .

You can also use all normal UCC commands to access the server. Note however that due to the
authentication and authorisation system in UNICORE, this may not always work as expected:
the "admin" user might not have the required Unix permissions to access files, list directories
etc.

The UCC commands that list server-side things (list-jobs etc) accept a filtering option, that can
be used to limit the results of the operation. Filtering works on the XML resource properties of
the resource in question.

Filtering is enabled by the "-f" or "--filter" option of the form

-f NAME OPERATOR VALUE

where NAME is the name of an element from the JSON resource properties.

For example, to list all running jobs:

ucc list-jobs -f status equals RUNNING

To list all jobs submitted on Nov 13, 2007:

ucc list-jobs -f submissionTime contains 2007-11-13

etc.

Table 13: Filtering options

Operator (long and
short form)

Description

equals, eq String equality (ignoring case)
notequals, neq String inequality (ignoring case)

UNICORE Commandline Client: User Manual 50

Table 13: (continued)

Operator (long and
short form)

Description

contains, c Substring match
notcontains, nc substring non-match
greaterthan, gt Lexical comparison
lessthan, lt Lexical comparison

13.4 Low-level operations

UCC supports low-level access to REST API endpoints using the "rest" command, specifically
you can execute HTTP GET, PUT, POST and DELETE requests with JSON content.

For example, to delete (destroy) a resource,

ucc rest delete <Address>

To get a complete property listing (i.e. print the JSON resource property document)

ucc rest get <Address>

To change properties, use the put command with JSON content.

ucc rest put ’{"Tags": ["tests", "hpc"]}’

These commands can be abbreviated, e.g. + ucc rest d <Address>

14 Scripting

UCC can execute Groovy scripts. Groovy (http://groovy.codehaus.org) is a dynamic scripting
language similar to Python or Ruby, but very closely integrated with Java. The scripting facility
can be used for automation tasks or implementation of custom commands, but it needs a bit of
insight into how UNICORE and UCC work.

14.1 Script context

Your Groovy scripts can access some predefined variables that are summarized in the following
table

http://groovy.codehaus.org

UNICORE Commandline Client: User Manual 51

Table 14: Variables accessible for scripts

variable description Java type
registry A preconfigured client for

accessing the registry
eu.unicore.client.registry.IRegistryClient

configurationProvider Security configuration
provider (truststore, etc)

de.fzj.unicore.ucc.authn.UCCConfigurationProvider

auth REST authentication
mechanism

eu.unicore.services.rest.client.IAuthCallback

registryURL the URL of the registry java.lang.String
messageWriter for writing messages to the

user
de.fzj.unicore.ucc.MessageWriter

commandLine the command line org.apache.commons.cli.CommandLine
properties defaults from the user’s

properties file
java.util.Properties

14.2 Examples

Some example Groovy scripts can be found in the samples/ directory of the UCC distribution.

15 Frequently asked questions

15.1 Configuration

15.1.1 Do I really have to store my password in the preferences file? Isn’t this insecure?

Putting the password in a file or giving it as a commandline parameter can be considered inse-
cure. The file could be read by others, and the commandline parameters may be visible in for
example in the output of the ps command. Thus, UCC will simply ask for the password in case
you did not specify it.

15.1.2 How can I enable more detailed logging?

UCC uses log4j, by default the configuration is done in <UCC_HOME>/conf/logging.properties
You can edit this file and increase the logging levels, choose to log to a file or to the console,
etc.

UNICORE Commandline Client: User Manual 52

15.2 Usage

15.2.1 Can I use multiple registries with UCC?

Yes. Simply use a comma-separated list of URLs for the "-c" option. However, you may
only use a single key/truststore, so all registries (and sites listed in them) must accept the same
security credentials.

15.2.2 Can I upload and execute my own executable?

Yes. Check Section 5.

15.2.3 Can I use UCC to list the contents of the registry?

Using the rest command (and the UNIX jq utility for formatting the output), this is very easy,
for example

ucc rest get https://localhost:8080/DEMO-SITE/rest/core/registries/ ←↩
default_registry | jq

will list the content of the registry.

15.2.4 I get strange errors related to security

Please read the general UNICORE FAQ on www.unicore.eu[the UNICORE website] which
contains descriptions of many common errors.

	Overview
	Installation and configuration
	Prerequisites
	Download
	Installation and configuration
	Preferences file
	Logging
	Installing UCC extensions
	Testing the installation

	Getting started with UCC
	Getting help
	Connecting
	List available sites
	Running your first job
	Listing your jobs

	Common options to UCC
	User preferences
	Configuration file
	Username and password authentication
	Support for token based authentication
	Certificate-based authentication
	Truststore options
	Trust store examples
	Client options
	Other options

	Running jobs
	Introduction
	Options overview
	Resource selection
	Processing jobs asynchronously
	Executing a command

	Job description format
	Overview
	Specifying the executable or application
	Arguments and Environment settings
	Application parameters
	Job data management
	Resources
	Miscellaneous options

	Data management functions
	Specifying remote locations
	Data movement
	General commands
	Finding data
	Using the StorageFactory service

	Metadata management functions
	Basics
	Available commands

	Workflows
	Introduction
	Command overview
	Basic use
	Workflow description format
	Managing workflow data
	Resuming a held workflow

	Batch processing
	Options
	Performance tuning options
	Resource selection in batch mode

	The UCC shell
	Changing property settings
	Running an external command
	Exiting the shell

	Sharing resources
	Editing ACLs
	Permission levels

	UCC for site administrators
	Security considerations
	Admin commands
	Listing jobs, sites, …
	Low-level operations

	Scripting
	Script context
	Examples

	Frequently asked questions
	Configuration
	Usage

