
UNICORE/X Manual

UNICORE/X MANUAL

UNICORE Team

Document Version: 1.0.0
Component Version: 8.0.4
Date: 13 10 2020

UNICORE/X Manual

Contents

1 Getting started 1

1.1 Prerequisites . 1

1.2 Installation . 1

2 Configuration of UNICORE/X 3

2.1 Overview of the main configuration options 3

2.2 Config file overview . 3

2.3 Settings for the UNICORE/X process (e.g. memory) 4

2.4 Config file formats . 4

2.5 UNICORE/X container configuration overview 5

2.6 Integration of UNICORE/X with other parts of a UNICORE infrastructure . . . 9

2.7 Startup code . 10

2.8 Security . 10

2.9 Configuring the execution backend (XNJS and TSI) 19

2.10 Configuring storage services . 19

2.11 HTTP proxy, timeout and web server settings 19

2.12 Features provided by UNICORE/X . 25

3 Administration 28

3.1 Controlling UNICORE/X memory usage . 28

3.2 Logging . 28

3.3 Administration and monitoring . 31

3.4 Migration of a UNICORE/X server to another physical host 33

4 Security concepts in UNICORE/X 33

4.1 Security concepts . 34

5 Attribute sources 35

5.1 UNICORE incarnation and authorization attributes 35

5.2 Configuring Attribute Sources . 37

5.3 Available attribute sources . 38

UNICORE/X Manual

6 RESTful services 42

6.1 Authentication . 42

6.2 JWT Delegation . 45

7 The UNICORE persistence layer 45

7.1 Configuring the persistence layer . 46

7.2 Clustering . 49

8 Configuring the XNJS 50

8.1 The UNICORE TSI . 52

8.2 Operation without a UNICORE TSI . 57

9 The IDB 58

9.1 Defining the IDB location . 58

9.2 IDB syntax description . 60

9.3 IDB Application definitions . 65

9.4 Application argument metadata . 70

9.5 Tweaking the incarnation process . 71

9.6 Incarnation tweaking context . 79

10 Data staging 81

10.1 SCP support . 81

10.2 Mail support . 83

10.3 GridFTP . 84

10.4 Configuration reference . 84

11 UFTP setup 85

12 Configuration of storages 88

12.1 Configuring storage services . 88

12.2 Configuring storages attached to TargetSystem instances 91

12.3 Configuring the StorageFactory service . 95

12.4 Configuring the job working directory storage services 98

UNICORE/X Manual

13 The UNICORE metadata service 99

13.1 Configuring metadata support . 99

13.2 Controlling metadata extraction . 100

14 Data-triggered processing 100

14.1 Enabling and disabling data-triggered processing 101

14.2 Controlling the scanning process . 101

14.3 Special case: shared storages . 101

14.4 Rules . 102

15 Authorization back-end (PDP) guide 104

15.1 Basic configuration . 104

15.2 Available PDP modules . 105

16 Guide to XACML security policies 108

16.1 Policy sets and combining of results . 109

16.2 Role-based access to services . 110

16.3 Limiting access to services to the service instance owner 112

16.4 More details on XACML use in UNICORE/X 112

16.5 Policy examples in XACML 1.1 syntax . 112

17 XtreemFS support 115

17.1 Site setup . 115

18 Cloud storages support (S3, Swift, CDMI) 116

18.1 Basic configuration . 116

18.2 Authentication credentials . 117

18.3 Examples . 119

UNICORE/X Manual 1

The UNICORE/X server is the central component of a UNICORE site. It hosts the services such
as job submission, job management, storage access, and provides the bridge to the functionality
of the target resources, e.g. batch systems or file systems.

For more information about UNICORE visit http://www.unicore.eu.

1 Getting started

1.1 Prerequisites

To run UNICORE/X, you need Java (OpenJDK, Oracle or IBM). We recommend using the
latest version of the OpenJDK.

If not installed on your system, you can download it from http://www.oracle.com/technetwork/-
java/javase/downloads/index.html

UNICORE/X has been developed and most extensively tested on Linux-like systems, but runs
on MacOS/X and even Windows well

Please note that

• to integrate into secure production environments, you will need access to a certificate author-
ity and generate certificates for all your UNICORE servers.

• to interface with a resource management system like Slurm or SGE, you need to install and
configure the UNICORE TSI server.

• to make your resources easily accessible outside of your firewalls, you should setup and
configure a UNICORE Gateway.

All these configuration options will be explained in the manual below.

1.2 Installation

UNICORE/X can be installed from either a tar.gz or zip archive, or (on Linux) from rpm/deb
packages.

To install from the tar.gz or zip archive, unpack the archive in a directory of your choice. You
should then review the config files in the conf/ directory, and adapt paths, hostname and ports.
The config files are commented, and you can also check Section 2.

To install from a Linux package, please use the package manager of your system to install the
archive.

Note
Using the Linux packages, you can install only a single UNICORE/X instance per machine
(without manual changes). The tar.gz / zip archives are self contained, and you can easily
install multiple servers per machine.

https://www.unicore.eu
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

UNICORE/X Manual 2

The following table gives an overview of the file locations for both tar.gz and Linux bundles.

Table 1: Directory Layout

Name in this
manual

tar.gz, zip rpm Description

CONF <basedir>/conf/ /etc/unicore/unicorex Config files
LIB <basedir>/lib/ /usr/share/unicore/unicorex/libJava libraries
LOG <basedir>/log/ /var/log/unicore/unicorex/Log files
BIN <basedir>/bin/ /usr/sbin/ Start/stop scripts

1.2.1 Starting/Stopping

There are two scripts that expect to be run from the installation directory. To start, do

cd <basedir>
bin/start.sh

Startup can take some time. After a successful start, the log files (e.g. LOG/startup.log)
contain a message "Server started." and a report on the status of any connections to other servers
(e.g. the TSI or global registry).

To stop the server, do:

cd <basedir>
bin/stop.sh

Using systemd on Linux, you would do (as root)

systemctl start unicore-unicorex.service

1.2.2 Log files

UNICORE/X writes its log file(s) to the LOG directory. By default, log files are rolled daily,
There is no automated removal of old logs, if required you will have to do this yourself.

Details about the logging configuration are given in Section 3.2.

UNICORE/X Manual 3

2 Configuration of UNICORE/X

2.1 Overview of the main configuration options

UNICORE/X is the central component in a UNICORE system and as such has a number of
interfaces to other UNICORE components, as well as many of configuration options. This
section gives an overview of what can and should be configured. The detailed configuration
guide follows in the next sections.

2.1.1 Mandatory configuration

• SSL certificates and basic security: UNICORE uses SSL certificates for all servers. For
UNICORE/X these settings are made in the container.properties config file

• Attribute sources: various ways are available to assign local attributes to users, such as Unix
user name, groups and role. For details, consult Section 5.

• Backend / target system access: to access a resource manager like Slurm, the UNICORE TSI
needs to be installed and UNICORE/X needs to be configured accordingly. Please consult
Section 8.

• You can choose to enable/disable certain UNICORE features, for example if you wish to set
up a storage-only UNICORE server. Please refer to Section 2.12.

UNICORE/X is configured using several config files residing in the CONF directory, see Sec-
tion 1 for the location of the CONF directory.

2.2 Config file overview

The following table indicates the main configuration files. Depending on configuration and
installed extensions, some of these files may not be present, or more files may be present.

UNICORE/X watches some configuration files for changes, and tries to reconfigure if they are
modified, at least where possible. This is indicated in the "dynamically reloaded" column.

Table 2: UNICORE/X configuration files

config file usage dynamically reloaded
startup.properties Java process settings (e.g.

memory), lib/log/conf
directories

no

logging.properties Logging levels, logfiles and
their properties

yes

UNICORE/X Manual 4

Table 2: (continued)

config file usage dynamically reloaded
uas.config Main server config file.

Defines features, storages,
AuthN/AuthZ, AIPs/PDPs

no

container.properties Server address, SSL
settings, Web server
settings

no

xnjs.properties Backend properties for the
UNICORE TSI

no

simpleidb Backend, installed
applications, resources

yes

simpleuudb Maps user DNs to local
attributes (optional)

yes

rest-users.txt Usernames/passwords for
REST authentication
(optional)

yes

xacml2Policies/*.xml Access control policy for
securing the web services

yes, via xacml2.config (do
touch xacml2.config to
trigger)

xacml2.config Configure the XACML2
access control component

yes

vo.config Configure the use of Unity
as an attribute source
(optional)

no

2.3 Settings for the UNICORE/X process (e.g. memory)

The properties controlling the Java virtual machine running the UNICORE/X process are con-
figured in

• UNIX: the CONF/startup.properties configuration file

• Windows: the "CONF\\wrapper.conf" configuration file

These properties include basic settings (like maximum memory), see Section 3 for more on
these.

General

2.4 Config file formats

UNICORE/X uses two different formats for configuration.

UNICORE/X Manual 5

2.4.1 Java properties

• Each property can be assigned a value using the syntax "name=value"

• Please do not quote values, as the quotes will be interpreted as part of the value

• Comment lines are started by the "#"

• Multiline values are possible by ending lines with "\", e.g.

name=value1 \
value2

In this example the value of the "name" property will be "value1 value2".

You can use system environment variables within property values, e.g.

name=${some_systemvariable}

Only use this syntax ${...} to reference UNICORE/X system variables!

To use UNIX system variables e.g. in storage path definitions use the syntax $VARIABLE, i.e.
WITHOUT curly braces.

2.4.2 XML

Various XML dialects are being used, so please refer to the example files distributed with UNI-
CORE for more information on the syntax. In general XML is a bit unfriendly to edit, and it is
rather easy to introduce typos.

Note
It is advisable to run a tool such as xmllint after editing XML files to check for typos

2.5 UNICORE/X container configuration overview

The following table gives an overview of the basic settings for a UNICORE/X server. These can
be set in uas.config or container.properties. Many of the settings (e.g. security)
will be explained in more detail in separate sections.

UNICORE/X Manual 6

Property name Type Default
value /
mandatory

Description

container.baseurl string - Server URL as visible from
the outside, usually the
gateway’s address,
including /services

container.client.[.*]string can have
subkeys

- Properties with this prefix
are used to configure clients
created by the container.
See separate documentation
for details.

container.externalregistry.url*list of
properties with
a common
prefix

- List of external registry
URLs to register local
services. (runtime
updateable)

container.externalregistry.use[true, false] false Whether the service should
register itself in external
registry(-ies), defined
separately. (runtime
updateable)

container.externalurlstring - Server URL as visible from
the outside, usually the
gateway’s address.

container.feature.[.*]string can have
subkeys

- Properties with this prefix
are used to configure the
deployed features. See
separate documentation for
details.

container.host string localhost Server interface to listen on.
container.httpServer.[.*]string can have

subkeys
- Properties with this prefix

are used to configure
container’s Jetty HTTP
server. See separate
documentation for details.

container.onstartupstring - Space separated list of
runnables to be executed on
server startup. It is
preferred to use onstartup.

container.onstartup.<NUMBER>list of
properties with
a common
prefix

- List of runnables to be
executed on server startup.

container.onstartupSelftest[true, false] true Controls whether to run
tests of connections to
external services on startup.

UNICORE/X Manual 7

Property name Type Default
value /
mandatory

Description

container.persistence.[.*]string can have
subkeys

- Properties with this prefix
are used to configure
container’s persistence
layer. See separate
documentation for details.

container.port integer [0 —
65535]

7777 Server listen port.

container.resources.executor.idletimeinteger number 60000 The timeout in millis for
removing idle threads.

container.resources.executor.maxsizeinteger number 32 The maximum thread pool
size for the scheduled
execution service

container.resources.executor.minsizeinteger number 10 The minimum thread pool
size for the scheduled
execution service

container.resources.scheduled.idletimeinteger number 60000 Timeout in millis for
removing idle threads.

container.resources.scheduled.sizeinteger >= 1 3 Defines the thread pool size
for the execution of
scheduled services.

container.security.[.*]string can have
subkeys

- Properties with this prefix
are used to configure
container’s security. See
separate documentation for
details.

container.servletpathstring /services Servlet context path. In
most cases shouldn’t be
changed.

container.sitenamestring DEMO-SITE Short, human friendly,
name of the target system,
should be unique in the
grid.

container.wsrf.expirycheck.initial[.*]integer number
can have
subkeys

120 The initial delay for
resource expiry checking
(seconds). Additionally it
can be used as a per-service
setting, after appending a
dot and service name to the
property key.

UNICORE/X Manual 8

Property name Type Default
value /
mandatory

Description

container.wsrf.expirycheck.period[.*]integer number
can have
subkeys

60 The interval for resource
expiry checking (seconds).
Additionally it can be used
as a per-service setting,
after appending a dot and
service name to the
property key.

container.wsrf.instanceLockingTimeout[.*]integer number
can have
subkeys

30 The timeout when
attempting to lock
resources. Additionally it
can be used as a per-service
setting, after appending a
dot and service name to the
property key.

container.wsrf.lifetime.default[.*]integer >= 1
can have
subkeys

86400 Default lifetime of
resources (in seconds). Add
dot and service name as a
suffix of this property to set
a default per particular
service type.

container.wsrf.lifetime.maximum[.*]integer >= 1
can have
subkeys

- Maximum lifetime of
resources (in seconds). Add
dot and service name as a
suffix of this property to set
a limit per particular
service type.

container.wsrf.maxInstancesPerUser[.*]integer >= 1
can have
subkeys

2147483647Maximum number per user
of WS-resource instances.
Add dot and service name
as a suffix of this property
to set a limit per particular
service type.

container.wsrf.persistence.persiststring de.fzj.unicore.wsrflite.persistence.PersistenceImplementation used to
maintain the persistence of
WS-resources state.

container.wsrf.sg.defaulttermtimeinteger >= 1 1800 The default termination
time of service group
entries in seconds.

UNICORE/X Manual 9

2.6 Integration of UNICORE/X with other parts of a UNICORE infrastruc-
ture

Since UNICORE/X is the central component, it is interfaced to other parts of the UNICORE
architecture, i.e. the Gateway and (optionally) a Registry.

2.6.1 Gateway

The gateway address is hard-coded into CONF/container.properties, using the "container.baseurl"
property:

container.baseurl=https://Gateway_HOST:Gateway_PORT/SITENAME/ ←↩
services

where Gateway_HOST and Gateway_PORT are the host and port of the gateway, and SITE-
NAME is the UNICORE/X site name. The gateway address MUST be accessible from the
UNICORE/X node!

On the gateway side, the UNICORE/X address is hard-coded as well, using an entry SITE-
NAME=address in the connections.properties file pointing to the network address of the UNI-
CORE/X container.

2.6.2 Registry

It is possible to configure UNICORE/X to contact one or more external or "global" Registries
in order to publish information on crucial services there.

For example

container.externalregistry.use=true
container.externalregistry.url=https://host1:8080/REGISTRY/services ←↩

/Registry?res=default_registry
container.externalregistry.url2=https://host2:8080/BACKUP/services/ ←↩

Registry?res=default_registry

2.6.3 Unity

If you want to support user authentication via Unity, you have to configure UNICORE/X to trust
one or more Unity servers. This is done using the container.security.trustedAssertionIssuers
property. This configures a truststore containing the certificates of all trusted Unity servers
(NOT the CA certificates).

For example, to configure a directory containing the trusted certificates in PEM format:

configure trusted Unity certificates
container.security.trustedAssertionIssuers.type=directory
container.security.trustedAssertionIssuers.directoryLocations.1= ←↩

conf/unity/unity.pem

UNICORE/X Manual 10

All the usual options for configuring truststores are available here, as well, as described in
Section .

Note
To enable certificate-less end user access, you will also make sure that the Gateway does not
require SSL client-authentication. Please refer to the Gateway manual.

2.7 Startup code

In order to provide a flexible initialization process for UNICORE/X, there is a set of properties
named "container.onstartup.*". The value(s) of this property consists of a whitespace separated
list of Java classes which must be implementing the "Runnable" interface. Many extensions for
UNICORE/X rely on an entry in this property to initialise themselves.

Table 3: Startup code

class name description usage
de.fzj.unicore.uas.util.DefaultOnStartupinitialises the job

management system and
the "local" registry; should
usually be run on startup

normal UNICORE/X
servers

2.8 Security

2.8.1 Overview

Security is a complex issue, and many options exist. On a high level, the following items need
to be configured.

• SSL setup (keystore and truststore settings for securing the basic communication between
components)

• Attribute sources configuration which assign an authorisation role, UNIX login, group and
other properties to UNICORE users. A number of attribute sources exist, which can be com-
bined using various combining algorithms. These are configured in the uas.config file. Due
to the complexity, the description of the configuration options can be found in Section 5.

• Access control setup (controlling in detail who can do what on which services). Again, several
options exist, which are described in Section 15.

UNICORE/X Manual 11

2.8.2 General security options

This table presents all security related options, except credential and truststore settings which
are described in the subsequent section.

Property name Type Default
value /
mandatory

Description

container.security.accesscontrol[.*][true, false] can
have subkeys

true Controls whether access
checking (authorisation) is
enabled. Can be used per
service after adding dot and
service name to the
property key. (runtime
updateable)

container.security.accesscontrol.pdpClass extending
de.fzj.unicore.wsrflite.security.pdp.UnicoreXPDP

- Controls which Policy
Decision Point (PDP, the
authorisation engine)
should be used. Default
value is determined as
follows: if
eu.unicore.uas.pdp.local.LocalHerasafPDP
is available then it is used.
If not then this option
becomes mandatory.

container.security.accesscontrol.pdpConfigfilesystem path - Path of the PDP
configuration file

container.security.additionalServiceIdentifier*list of
properties with
a common
prefix

- List of additional service
identifiers (e.g. URLs
where this service is
accessible) accepted in
SAML authentication.

container.security.attributes[.*]string can have
subkeys

- Prefix used for
configurations of particular
attribute sources.

container.security.attributes.combiningPolicystring MERGE_LAST_OVERRIDESWhat algorithm should be
used for combining the
attributes from multiple
attribute sources (if more
then one is defined).

container.security.attributes.orderstring - Attribute sources in
invocation order.

UNICORE/X Manual 12

Property name Type Default
value /
mandatory

Description

container.security.credential.[.*]string can have
subkeys

- Properties with this prefix
are used to configure the
credential used by the
container. See separate
documentation for details.

container.security.defaultVOs.<NUMBER>list of
properties with
a common
prefix

empty
string

List of default VOs, which
should be assigned for a
request without a VO set.
The first VO on the list
where the user is member
will be used.

container.security.delegationTruststore.[.*]string can have
subkeys

- When separateDelegation-
Truststore is true allows to
configure the trust
delegation truststore (using
normal truststore properties
with this prefix).

container.security.dynamicAttributes[.*]string can have
subkeys

- Prefix used for
configurations of particular
dynamic attribute sources.

container.security.dynamicAttributes.combiningPolicystring MERGE_LAST_OVERRIDESWhat algorithm should be
used for combining the
attributes from multiple
dynamic attribute sources
(if more then one is
defined).

container.security.dynamicAttributes.orderstring - Dynamic attribute sources
in invocation order.

container.security.gateway.certificatefilesystem path - Path to gateway’s certificate
file in PEM or DER format.
Note that DER format is
used only for files with .der
extension. It is used only
for gateway’s
authentication assertions
verification (if enabled).
Note that this is not needed
to set it if waiting for
gateway on startup is turned
on.

container.security.gateway.checkSignature[true, false] true Controls whether gateway’s
authentication assertions
are verified.

UNICORE/X Manual 13

Property name Type Default
value /
mandatory

Description

container.security.gateway.enable[true, false] true Whether to accept
gateway-based
authentication. Note that if
it is enabled either the site
must be secured (usually
via firewall) to disable
non-gateway access or the
verification of gateway’s
assertions must be enabled.

container.security.gateway.registration[true, false] false Whether the site should try
to autoregister itself with
the Gateway. This must be
also configured on the
Gateway side.

container.security.gateway.registrationSecretstring - Required secret when
autoregistering with the
Gateway. This must match
the secret configured on the
Gateway side.

container.security.gateway.registrationUpdateIntervalinteger >= 10 30 How often the automatic
gateway registration should
be refreshed.

container.security.gateway.waitOnStartup[true, false] true Controls whether to wait
for the gateway at startup.

container.security.gateway.waitTimeinteger >= 1 180 Controls for how long to
wait for the gateway on
startup (in seconds).

container.security.rest[.*]string can have
subkeys

- Prefix used to configure
REST subsystem security.
See separate docs.

container.security.separateDelegationTruststore[true, false] false Significant for XSEDE
integration: when turned
on, allows for using a
separate truststore for
delegation checking then
the one used for SSL
connections checking.

container.security.sessionLifetimeinteger >= 1 28800 Controls the lifetime of
security sessions (in
seconds).

UNICORE/X Manual 14

Property name Type Default
value /
mandatory

Description

container.security.sessionsEnabled[true, false] true Controls whether the server
supports security sessions
which reduce client/server
traffic and load.

container.security.sessionsPerUserinteger >= 1 5 Controls the number of
security sessions each user
can have. If exceeded, some
cleanup will be performed.

container.security.signatures[true, false] false Controls whether signatures
(providing non-repudiation
guarantees) on key requests
should be required. If the
system is setup without
user certificates, signatures
must be disabled.

container.security.sslEnabled[true, false] true Controls whether secure
SSL mode is enabled.

container.security.trustedAssertionIssuers.[.*]string can have
subkeys

- Allows for configuring a
truststore (using normal
truststore properties with
this prefix) with certificates
of trusted services (not
CAs!) which are permitted
to issue trust delegations
and authenticate with
SAML. Typically this
truststore should contain
certificates of all Unity
instanes installed.

container.security.truststore.[.*]string can have
subkeys

- Properties with this prefix
are used to configure
container’s trust settings
and certificates validation.
See separate documentation
for details.

2.8.3 Credential and truststore settings

These properties are used to configure the server’s credential (used to make outgoing SSL con-
nections) and truststore. The truststore controls which incoming SSL connections are accepted.

We recommend using a credential in PKCS12 or .pem format, and a directory containing .pem
files as truststore.

UNICORE/X Manual 15

Property name Type Default
value /
mandatory

Description

container.security.credential.pathfilesystem path mandatory
to be set

Credential location. In case
of jks, pkcs12 and pem store
it is the only location
required. In case when
credential is provided in
two files, it is the certificate
file path.

container.security.credential.format[jks, pkcs12,
der, pem]

- Format of the credential. It
is guessed when not given.
Note that pem might be
either a PEM keystore with
certificates and keys (in
PEM format) or a pair of
PEM files (one with
certificate and second with
private key).

container.security.credential.passwordstring - Password required to load
the credential.

container.security.credential.keyPathstring - Location of the private key
if stored separately from
the main credential
(applicable for pem and der
types only),

container.security.credential.keyPasswordstring - Private key password,
which might be needed
only for jks or pkcs12, if
key is encrypted with
different password then the
main credential password.

container.security.credential.keyAliasstring - Keystore alias of the key
entry to be used. Can be
ignored if the keystore
contains only one key entry.
Only applicable for jks and
pkcs12.

Property name Type Default
value /
mandatory

Description

container.security.truststore.allowProxy[ALLOW,
DENY]

ALLOW Controls whether proxy
certificates are supported.

UNICORE/X Manual 16

Property name Type Default
value /
mandatory

Description

container.security.truststore.type[keystore,
openssl,
directory]

mandatory
to be set

The truststore type.

container.security.truststore.updateIntervalinteger number 600 How often the truststore
should be reloaded, in
seconds. Set to negative
value to disable refreshing
at runtime. (runtime
updateable)

--- Directory type settings ---
container.security.truststore.directoryConnectionTimeoutinteger number 15 Connection timeout for

fetching the remote CA
certificates in seconds.

container.security.truststore.directoryDiskCachePathfilesystem path - Directory where CA
certificates should be
cached, after downloading
them from a remote source.
Can be left undefined if no
disk cache should be used.
Note that directory should
be secured, i.e. normal
users should not be allowed
to write to it.

container.security.truststore.directoryEncoding[PEM, DER] PEM For directory truststore
controls whether
certificates are encoded in
PEM or DER. Note that the
PEM file can contain
arbitrary number of
concatenated,
PEM-encoded certificates.

container.security.truststore.directoryLocations.*list of
properties with
a common
prefix

- List of CA certificates
locations. Can contain
URLs, local files and
wildcard expressions.
(runtime updateable)

--- Keystore type settings ---
container.security.truststore.keystoreFormatstring - The keystore type (jks,

pkcs12) in case of truststore
of keystore type.

container.security.truststore.keystorePasswordstring - The password of the
keystore type truststore.

UNICORE/X Manual 17

Property name Type Default
value /
mandatory

Description

container.security.truststore.keystorePathstring - The keystore path in case of
truststore of keystore type.

--- Openssl type settings ---
container.security.truststore.opensslNewStoreFormat[true, false] false In case of openssl

truststore, specifies whether
the trust store is in openssl
1.0.0+ format (true) or
older openssl 0.x format
(false)

container.security.truststore.opensslNsMode[GLOBUS_EUGRIDPMA,
EU-
GRIDPMA_GLOBUS,
GLOBUS,
EUGRIDPMA,
GLOBUS_EUGRIDPMA_REQUIRE,
EU-
GRIDPMA_GLOBUS_REQUIRE,
GLOBUS_REQUIRE,
EU-
GRIDPMA_REQUIRE,
EU-
GRIDPMA_AND_GLOBUS,
EU-
GRIDPMA_AND_GLOBUS_REQUIRE,
IGNORE]

EUGRIDPMA_GLOBUSIn case of openssl
truststore, controls which
(and in which order)
namespace checking rules
should be applied. The
REQUIRE settings will
cause that all configured
namespace definitions files
must be present for each
trusted CA certificate
(otherwise checking will
fail). The AND settings will
cause to check both existing
namespace files. Otherwise
the first found is checked
(in the order defined by the
property).

container.security.truststore.opensslPathfilesystem path /etc/grid-security/certificatesDirectory to be used for
opeenssl truststore.

--- Revocation settings ---
container.security.truststore.crlConnectionTimeoutinteger number 15 Connection timeout for

fetching the remote CRLs
in seconds (not used for
Openssl truststores).

UNICORE/X Manual 18

Property name Type Default
value /
mandatory

Description

container.security.truststore.crlDiskCachePathfilesystem path - Directory where CRLs
should be cached, after
downloading them from
remote source. Can be left
undefined if no disk cache
should be used. Note that
directory should be
secured, i.e. normal users
should not be allowed to
write to it. Not used for
Openssl truststores.

container.security.truststore.crlLocations.*list of
properties with
a common
prefix

- List of CRLs locations. Can
contain URLs, local files
and wildcard expressions.
Not used for Openssl
truststores. (runtime
updateable)

container.security.truststore.crlMode[REQUIRE,
IF_VALID,
IGNORE]

IF_VALID General CRL handling
mode. The IF_VALID
setting turns on CRL
checking only in case the
CRL is present.

container.security.truststore.crlUpdateIntervalinteger number 600 How often CRLs should be
updated, in seconds. Set to
negative value to disable
refreshing at runtime.
(runtime updateable)

container.security.truststore.ocspCacheTtlinteger number 3600 For how long the OCSP
responses should be locally
cached in seconds (this is a
maximum value, responses
won’t be cached after
expiration)

container.security.truststore.ocspDiskCachefilesystem path - If this property is defined
then OCSP responses will
be cached on disk in the
defined folder.

container.security.truststore.ocspLocalResponders.<NUMBER>list of
properties with
a common
prefix

- Optional list of local OCSP
responders

UNICORE/X Manual 19

Property name Type Default
value /
mandatory

Description

container.security.truststore.ocspMode[REQUIRE,
IF_AVAILABLE,
IGNORE]

IF_AVAILABLEGeneral OCSP ckecking
mode. REQUIRE should
not be used unless it is
guaranteed that for all
certificates an OCSP
responder is defined.

container.security.truststore.ocspTimeoutinteger number 10000 Timeout for OCSP
connections in miliseconds.

container.security.truststore.revocationOrder[CRL_OCSP,
OCSP_CRL]

OCSP_CRL Controls overal revocation
sources order

container.security.truststore.revocationUseAll[true, false] false Controls whether all
defined revocation sources
should be always checked,
even if the first one already
confirmed that a checked
certificate is not revoked.

2.9 Configuring the execution backend (XNJS and TSI)

Information on the configuration of the XNJS and TSI backend can be found in Section 8.

2.10 Configuring storage services

Information on the configuration of the storage factory service, shared storages and per-user
storages attached to target systems can be found in Section 12.

2.11 HTTP proxy, timeout and web server settings

A number of settings exist that control the the web server and the HTTPClient library used for
outgoing HTTP(s) calls.

The HTTP server options are shown in the following table.

Property name Type Default
value /
mandatory

Description

container.httpServer.CORS_allowedHeadersstring * CORS: comma separated
list of allowed HTTP
headers (default: any)

container.httpServer.CORS_allowedMethodsstring GET,PUT,POST,DELETE,HEADCORS: comma separated
list of allowed HTTP verbs.

UNICORE/X Manual 20

Property name Type Default
value /
mandatory

Description

container.httpServer.CORS_allowedOriginsstring * CORS: allowed script
origins.

container.httpServer.CORS_chainPreflight[true, false] false CORS: whether preflight
OPTION requests are
chained (passed on) to the
resource or handled via the
CORS filter.

container.httpServer.CORS_exposedHeadersstring Location,Content-TypeCORS: comma separated
list of HTTP headers that
are allowed to be exposed
to the client.

container.httpServer.disabledCipherSuitesstring empty
string

Space separated list of SSL
cipher suites to be disabled.
Names of the ciphers must
adhere to the standard Java
cipher names, available
here:
http://docs.oracle.com/-
javase/8/docs/technotes/-
guides/security/-
SunProviders.html#SupportedCipherSuites

container.httpServer.enableCORS[true, false] false Control whether
Cross-Origin Resource
Sharing is enabled. Enable
to allow e.g. accesing
REST services from
client-side JavaScript.

container.httpServer.enableHsts[true, false] false Control whether HTTP
strict transport security is
enabled. It is a good and
strongly suggested security
mechanism for all
production sites. At the
same time it can not be
used with self-signed or not
issued by a generally
trusted CA server
certificates, as with HSTS a
user can’t opt in to enter
such site.

http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites
http://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html#SupportedCipherSuites

UNICORE/X Manual 21

Property name Type Default
value /
mandatory

Description

container.httpServer.fastRandom[true, false] false Use insecure, but fast
pseudo random generator to
generate session ids instead
of secure generator for SSL
sockets.

container.httpServer.gzip.enable[true, false] false Controls whether to enable
compression of HTTP
responses.

container.httpServer.gzip.minGzipSizeinteger number 100000 Specifies the minimal size
of message that should be
compressed.

container.httpServer.highLoadConnectionsinteger number 200 If the number of
connections exceeds this
amount, then the connector
is put into a special low on
resources state. Existing
connections will be closed
faster. Note that the server
will also go to the low on
resources mode if there are
no available threads in the
pool. You can set this to 0
to disable the connections
limit (and have only thread
pool size governed limit). If
set to a negative number
then the low on resources
mode won’t be used at all.

container.httpServer.lowResourceMaxIdleTimeinteger >= 1 100 In low resource conditions,
time (in ms.) before an idle
connection will time out.

container.httpServer.maxIdleTimeinteger >= 1 200000 Time (in ms.) before an idle
connection will time out. It
should be large enough not
to expire connections with
slow clients, values below
30s are getting quite risky.

UNICORE/X Manual 22

Property name Type Default
value /
mandatory

Description

container.httpServer.maxThreadsinteger number 255 Maximum number of
threads to have in the thread
pool for processing HTTP
connections. Note that this
number will be increased
with few additional threads
to handle connectors.

container.httpServer.minThreadsinteger >= 1 1 Minimum number of
threads to have in the thread
pool for processing HTTP
connections. Note that this
number will be increased
with few additional threads
to handle connectors.

container.httpServer.requireClientAuthn[true, false] true Controls whether the SSL
socket requires client-side
authentication.

container.httpServer.wantClientAuthn[true, false] true Controls whether the SSL
socket accepts (but does not
require) client-side
authentication.

container.httpServer.xFrameAllowedstring http://localhostURI origin that is allowed
to embed web interface
inside a (i)frame.
Meaningful only if the
xFrameOptions is set to
allowFrom. The value
should be in the form:
http[s]://host[:port]

container.httpServer.xFrameOptions[deny,
sameOrigin,
allowFrom,
allow]

deny Defines whether a
clickjacking prevention
should be turned on, by
insertionof the
X-Frame-Options HTTP
header. The allow value
disables the feature. See the
RFC 7034 for details. Note
that for the allowFrom you
should define also the
xFrameAllowed option and
it is not fully supported by
all the browsers.

UNICORE/X Manual 23

The HTTP client options are the following

Property name Type Default
value /
mandatory

Description

container.client.digitalSigningEnabled[true, false] true Controls whether signing of
key web service requests
should be performed.

container.client.httpAuthnEnabled[true, false] false Whether HTTP basic
authentication should be
used.

container.client.httpPasswordstring empty
string

Password for use with
HTTP basic authentication
(if enabled).

container.client.httpUserstring empty
string

Username for use with
HTTP basic authentication
(if enabled).

container.client.inHandlersstring empty
string

Space separated list of
additional handler class
names for handling
incoming WS messages

container.client.maxWsCallRetriesinteger number 3 Controls how many times
the client should try to call
a failing web service. Note
that only the transient
failure reasons cause the
retry. Note that value of 0
enables unlimited number
of retries, while value of 1
means that only one call is
tried.

container.client.messageLogging[true, false] false Controls whether messages
should be logged (at INFO
level).

container.client.outHandlersstring empty
string

Space separated list of
additional handler class
names for handling
outgoing WS messages

container.client.securitySessions[true, false] true Controls whether security
sessions should be enabled.

UNICORE/X Manual 24

Property name Type Default
value /
mandatory

Description

container.client.serverHostnameChecking[NONE,
WARN, FAIL]

WARN Controls whether server’s
hostname should be
checked for matching its
certificate subject. This
verification prevents
man-in-the-middle attacks.
If enabled WARN will only
print warning in log, FAIL
will close the connection.

container.client.sslAuthnEnabled[true, false] true Controls whether SSL
authentication of the client
should be performed.

container.client.wsCallRetryDelayinteger number 10000 Amount of milliseconds to
wait before retry of a failed
web service call.

--- HTTP client settings ---
container.client.http.allow-chunking[true, false] true If set to false, then the

client will not use HTTP
1.1 data chunking.

container.client.http.connection-close[true, false] false If set to true then the client
will send connection close
header, so the server will
close the socket.

container.client.http.connection.timeoutinteger number 20000 Timeout for the connection
establishing (ms)

container.client.http.maxPerRouteinteger number 6 How many connections per
host can be made. Note:
this is a limit for a single
client object instance.

container.client.http.maxRedirectsinteger number 3 Maximum number of
allowed HTTP redirects.

container.client.http.maxTotalinteger number 20 How many connections in
total can be made. Note:
this is a limit for a single
client object instance.

container.client.http.socket.timeoutinteger number 0 Socket timeout (ms)
--- HTTP proxy settings ---

container.client.http.nonProxyHostsstring - Space (single) separated list
of hosts, for which the
HTTP proxy should not be
used.

UNICORE/X Manual 25

Property name Type Default
value /
mandatory

Description

container.client.http.proxy.passwordstring - Relevant only when using
HTTP proxy: defines
password for authentication
to the proxy.

container.client.http.proxy.userstring - Relevant only when using
HTTP proxy: defines
username for authentication
to the proxy.

container.client.http.proxyHoststring - If set then the HTTP proxy
will be used, with this
hostname.

container.client.http.proxyPortinteger number - HTTP proxy port. If not
defined then system
property is consulted, and
as a final fallback 80 is
used.

container.client.http.proxyTypestring HTTP HTTP proxy type: HTTP or
SOCKS.

2.12 Features provided by UNICORE/X

The functionality of the UNICORE/X server is organised into "features", where each feature
can combine services, startup code and the like.

Features are enabled by default.

Features can be disabled via configuration. It is also possible to disable single services in a
feature.

2.12.1 JobManagement

This feature deals with job submission and management, as well as those storage services re-
quired for job processing.

To disable the whole feature

container.feature.JobManagement.enable=false

Table 4: UNICORE/X JobManagement feature

Service name usage
TargetSystemFactoryService High level compute service

UNICORE/X Manual 26

Table 4: (continued)

Service name usage
TargetSystemService Per-user compute service instances
JobManagement Per job service instance
ReservationManagement Make and edit reservations
StorageManagement Access to storages
ServerServerFileTransfer Server-server file transfers
ClientServerFileTransfer Data upload/download

2.12.2 StorageAccess

This feature provides storage access, storage factory service, metadata management and file
transfers.

Table 5: UNICORE/X StorageAccess feature

Service name usage
StorageManagement Access to storages
StorageFactory Dynamically create new storage endpoints
MetadataManagement Metadata service
ServerServerFileTransfer Server-server file transfers
ClientServerFileTransfer Data upload/download

To disable the whole feature

container.feature.StorageAccess.enable=false

To disable only one service, e.g. the Storage Factory

container.feature.StorageAccess.StorageFactory.enable=false

2.12.3 Base

This feature provides low-level services, but also contains the RESTful APIs for jobs and data
management.

UNICORE/X Manual 27

Table 6: UNICORE/X Base feature

Service name usage
core RESTful APIs for jobs and data
Enumeration SOAP/XML service for long lists (jobs,

. . .)
Task SOAP/XML service for async tasks

(metadata extraction)

2.12.4 Admin

This feature provides the Admin service (see Section 3.3.2)

Table 7: UNICORE/X Admin feature

Service name usage
admin RESTful API to the admin service
AdminService SOAP/XML API to the admin service

2.12.5 Registry

This feature provides the Registry service. This covers both the "internal" version running in
every UNICORE/X server, as well as the shared Registry that is used to store information about
multiple UNICORE servers.

A setting

container.feature.Registry.mode=shared

will enable "shared" mode. Don’t do this on a "normal" UNICORE/X server.

Table 8: UNICORE/X Registry feature

Service name usage
registries RESTful API to the Registry service
Registry Registry service and SOAP/XML API
ServiceGroupEntry Registry entries service and SOAP/XML

API

UNICORE/X Manual 28

3 Administration

3.1 Controlling UNICORE/X memory usage

You can set a limit on the number of service instances (e.g. jobs) per user. This allows you
to make sure your server stays nicely up and running even if flooded by jobs. To enable, edit
CONF/container.properties and add properties, e.g.

container.wsrf.maxInstancesPerUser.JobManagement=200
container.wsrf.maxInstancesPerUser.FileTransfer=20

The last part of the property name is the service name, see Section 2.12 for the services in
UNICORE/X.

When the limits are reached, the server will report an error to the client (e.g. when trying to
submit a new job).

3.2 Logging

UNICORE uses the Log4j logging framework (http://logging.apache.org/log4j/1.2/), which sup-
ports many useful options, such as logging to the server’s syslog (on Linux). Log4j is configured
using a config file. By default, this file is CONF/logging.properties. To change the de-
fault, edit the start script (CONF/startup.properties) or, on Windows, the CONF/wrapper.conf.
The config file is specified with a Java property log4j.configuration.

Note
You can change the logging configuration at runtime by editing the logging.properties file. The
new configuration will take effect a few seconds after the file has been modified.

By default, log files are written to the the LOGS directory.

The following example config file configures logging so that log files are rotated daily.

Set root logger level to INFO and its only appender to A1.
log4j.rootLogger=INFO, A1

A1 is set to be a rolling file appender with default params
log4j.appender.A1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.A1.File=logs/uas.log

#configure daily rollover: once per day the uas.log will be copied
#to a file named e.g. uas.log.2008-12-24

http://logging.apache.org/log4j/1.2/

UNICORE/X Manual 29

log4j.appender.A1.DatePattern=’.’yyyy-MM-dd

A1 uses the PatternLayout
log4j.appender.A1.layout=org.apache.log4j.PatternLayout
log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩

%m%n

Note
In Log4j, the log rotation frequency is controlled by the DatePattern. Check
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
for the details.

Within the logging pattern, you can use special variables to output information. In addition to
the variables defined by Log4j (such as %d), UNICORE defines several variables related to the
client and the current job.

Variable Description
%X{clientName} the distinguished name of the current

client
%X{jobID} the unique ID of the currently processed

job

A sample logging pattern might be

log4j.appender.A1.layout.ConversionPattern=%d [%X{clientName}] [%X{ ←↩
jobID}] [%t] %-5p %c{1} %x - %m%n

For more info on controlling the logging we refer to the log4j documentation:

• PatternLayout

• RollingFileAppender

• DailyRollingFileAppender

Log4j supports a very wide range of logging options, such as date based or size based file
rollover, logging different things to different files and much more. For full information on
Log4j we refer to the publicly available documentation, for example the Log4j manual.

3.2.1 Logger categories, names and levels

Logger names are hierarchical. In UNICORE, prefixes are used (e.g. "unicore.security") to
which the Java class name is appended. For example, the XUUDB connector in UNICORE/X
logs to the "unicore.security.XUUDBAuthoriser" logger.

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/DailyRollingFileAppender.html
http://logging.apache.org/log4j/1.2/manual.html

UNICORE/X Manual 30

Therefore the logging output produced can be controlled in a fine-grained manner. Log levels
in Log4j are (in increasing level of severity) TRACE, DEBUG, INFO, WARN, ERROR, amd
FATAL.

For example, to debug a security/authorisation problem in the UNICORE/X security layer, you
can set

log4j.logger.unicore.security=DEBUG

If you are just interested in XUUDB related output, you can set

log4j.logger.unicore.security=INFO
log4j.logger.unicore.security.XUUDBAuthoriser=DEBUG

so the XUUDBAuthoriser will log on DEBUG level, while the other security components log
on INFO level.

Here is a table of the various logger categories

Log category Description
unicore All of UNICORE
unicore.security Security layer
unicore.services Service operational information
unicore.services.jobexecution Information related to job execution
unicore.services.jobexecution.USAGE Usage logging (see next section)
unicore.xnjs XNJS subsystem (execution engine)
unicore.xnjs.tsi TSI subsystem (batch system connector)
unicore.client Client calls (to other servers)
unicore.wsrflite Underlying services environment (WSRF

framework)
uftp UFTP client/server communication
org.apache.cxf Web service toolkit (Apache CXF)

Note
Please take care to not set the global level to TRACE or DEBUG for long times, as this will
produce a lot of output.

3.2.2 Usage logging

Often it is desirable to keep track of the usage of your UNICORE site. The UNICORE/X server
has a special logger category called unicore.services.jobexecution.USAGE which
logs information about finished jobs at INFO level. If you wish to enable this, set

log4j.logger.unicore.services.jobexecution.USAGE=INFO

UNICORE/X Manual 31

It might be convenient to send usage output to a different file than normal log output. This is
easily achieved with log4j:

send usage logger output to a separate file

use separate appender ’U1’ for usage info
log4j.logger.unicore.services.jobexecution.USAGE=INFO,U1

U1 is set to be a rolling file appender with default params
log4j.appender.U1=org.apache.log4j.DailyRollingFileAppender
log4j.appender.U1.File=logs/usage.log
U1 uses the PatternLayout
log4j.appender.U1.layout=org.apache.log4j.PatternLayout
log4j.appender.U1.layout.ConversionPattern=%d [%t] %-5p %c{1} %x - ←↩

%m%n

For each finished job, the usage logger will log a line with the following information (if avail-
able)

[result] [executable] [actionUUID] [clientDN] [BSSJobId] [←↩
clientXlogin] [jobName] [machineName] [VOs]

An example output line is:

2011-08-16 10:00:39,513 [XNJS-1-JobRunner-1] INFO USAGE - [←↩
SUCCESSFUL] [/bin/date] [e9deab79-af1f-4704-a6bd-427b3ab20969 ←↩
] [CN=Bernd Schuller, O=GridGermany, C=DE] [82942] [schuller] [←↩
Date job submitted using UCC] [zam025c02.zam.kfa-juelich.de] []

3.3 Administration and monitoring

The health of a UNICORE/X container, and things like running services, lifetimes, etc. can be
monitored in several ways.

3.3.1 Commandline client (UCC)

It is possible to use the UNICORE commandline client (UCC) for administrative and operations
tasks.

To do this you need to configure UCC with administrative privileges. One way to do this is using
the server certificate of the UNICORE/X server, which will give UCC administrator rights.

Also you should connect directly to UNICORE/X, not to the registry as usual. Here is an
example UCC configuration file. Say your UNICORE/X server is running on myhost on port
7777, your preferences file would look like this

UNICORE/X Manual 32

registry=https://myhost:7777/services/Registry?res=default_registry

use UNICORE/X keystore
credential.path=/path/to/unicorex/keystore
credential.password=...

truststore config omitted

Note that the registry URL points directly to the UNICORE/X server, not to a gateway.

Another way is to add the "admin" role to your user account, and select this role when running
UCC commands

ucc -Z role:admin

Examples

Some UCC commands that are useful are the list-jobs, list-sites and wsrf commands. Using
list-jobs you can search for jobs with given properties, whereas the wsrf command allows to
look at any resource, or even destroy resources.

To list all jobs on the server belonging to a specific user, do

ucc list-jobs -f Log contains <username>

where username is some unique part of the user’s DN, or the xlogin. Similarly, you can filter
based on other properties of the job.

The wsrf command can be used to destroy resources, extend their lifetime and look at their
properties. Please see "ucc wsrf -h" for details.

Try

ucc wsrf getproperties https://myhost:7777/services/ ←↩
TargetSystemFactory?res=default_target_system_factory

3.3.2 The Admin web service

The Admin service is a powerful tool to get "inside information" about your server using the
UCC (or possibly another UNICORE client) and run one of the available "admin actions", which
provide useful functions.

If you have enabled the admin service, you can do

ucc admin-info -l

UNICORE/X Manual 33

to get information about available admin services. Note that you need to have role "admin" to
invoke the admin service. The output includes information about the available administrative
commands. To run one of these, you can use the admin-runcommand command. For example,
to temporarily disable job submission

ucc admin-runcommand ToggleJobSubmission

To have a look at the internal information about a user job, try

ucc admin-runcommand ShowJobDetails jobID=......

where jobID is the unique ID of the job.

3.4 Migration of a UNICORE/X server to another physical host

If you want to migrate a UNICORE/X server to another host, there are several things to con-
sider. The hostname and port are listed in CONF/wsrflite.xml and usually in the Gateway’s
connection.properties file. These you will have to change. Otherwise, you can copy the relevant
files in CONF to the new machine. Also, the persisted state data needs to be moved to the new
machine, if it is stored on the file system. If it is stored in a database, there is nothing to be
done. If you are using a TSI server, you might need to edit the TSI’s properties file and update
the tsi.njs_machine property.

4 Security concepts in UNICORE/X

This section describes the basic security concepts and architecture used in UNICORE/X. The
overall procedure performed by the security infrastructure can be summarised as follows:

• the incoming message is authenticated by the SSL layer

• extract the information used for authorisation from the message sent to the server. This infor-
mation includes: originator of the message(in case the message passed through a UNICORE
gateway), trust delegation tokens, incoming VO membership assertions, etc.

• deal with trust delegation

• generate or lookup attributes to be used used for authorisation in the configured attribute
sources

• perform policy check by executing a PDP request

All these steps can be switched on/off, and use pluggable components. Thus, the security level
of a UNICORE/X server is widely configurable

UNICORE/X Manual 34

4.1 Security concepts

4.1.1 Identity

A server has a certificate, which is used to identify the server when it makes a web service
request. This certificate resides in the server keystore, and can be configured in the usual config
file (see Section 2).

4.1.2 Security tokens

When a client makes a request to UNICORE/X, a number of tokens are read from the message
headers. These are placed in the security context that each WSRF instance has. Currently,
tokens are the certificates for the UNICORE consignor and user, if available. Also, trust dele-
gation assertions are read, and it is checked if the message is signed.

4.1.3 Resource ownership

Each service is owned by some entity identified by a distinguished name (X500 Principal). By
default, the server is the owner. When a resource is created on user request (for example when
submitting a job), the user is the owner.

4.1.4 Trust delegation

When the user and consignor are not the same, UNICORE/X will check whether the consignor
has the right to act on behalf of the user. This is done by checking whether a trust delegation
assertion has been supplied and is valid.

4.1.5 Attributes

UNICORE/X retrieves user attributes using either a local component or a remote service. In
the default configuration, the XUUDB attribute service is contacted. See Section 5 for more
information.

4.1.6 Policy checks

Each request is checked based on the following information.

• available security tokens

• the resource owner

• the resource accessed (e.g. service name + WSRF instance id)

UNICORE/X Manual 35

• the activity to be performed (the web method name such as GetResourceProperty)

The validation is performed by the PDP (Policy Decision Point). The default PDP uses a list
of rules expressed in XACML 2.0 format that are configured for the server. The Section 15
describes how to configure different engines for policy evaluation including a remote one.

4.1.7 Authorisation

A request is allowed, if the PDP allows it, based on the user’s attributes.

5 Attribute sources

The authorization process in UNICORE/X requires that each UNICORE user (identified by an
X.500 DN) is assigned some attributes such as her role. Attributes are also used to subsequently
run tasks for the authorized user and possibly can be used for other purposes as well (for instance
for accounting).

Therefore the most important item for security configuration is selecting and maintaining a so
called attribute source (called sometimes attribute information point, AIP), which is used by
USE to assign attributes to UNICORE users.

Several attribute sources are available, that can even be combined for maximum flexibility and
administrative control.

There are two kinds of attribute sources:

• Classic or static attribute sources, which are used BEFORE authorization. Those attribute
sources maintain a simple mappings of user certificates (or DNs) to some attributes. The pri-
mary role of those sources is to provide attributes used for authorization, but also incarnation
attributes may be assigned.

• Dynamic attribute sources, which are used AFTER authorization, only if it was successful.
Therefore these attribute sources can assign only the incarnation attributes. The difference is
that attributes are collected for already authorized users, so the attributes can be assigned in
dynamic way not only using the user’s identity but also all the static attributes. This feature
can be used for assigning pool accounts for authorized users or adding additional supplemen-
tary gids basing on user’s Virtual Organization.

5.1 UNICORE incarnation and authorization attributes

Note that actual names of the attributes presented here are not very important. Real attribute
names are defined by attribute source (advanced attribute sources, like Unity/SAML attribute
source, even provide a possibility to choose what attribute names are mapped to internal UNI-
CORE attributes). Therefore it is only important to know the concepts represented by the inter-
nal UNICORE attributes. On the other hand the values which are defined below are important.

UNICORE/X Manual 36

The attributes in UNICORE can be multi-valued.

There are two special authorization attributes:

• role - represents an abstract user’s role. The role is used in a default (and rarely changed)
UNICORE authorization policy and in authorization process in general. There are several
possible values that are recognized by the default authorization policy:

• user - value specifies that the subject is allowed to use the site as a normal user (submit jobs,
get results, . . .)

• admin - value specifies that the subject is an administrator and may do everything. For
example may submit jobs, get results of jobs of other users and even delete them.

• banned - user with this role is explicitly banned and all her request are denied.

• anything else - means that user is not allowed to do anything serious. Some very basic, read-
only operations are allowed, but this is a technical detail. Also access to owned resources is
granted, what can happen if the user had the user role before. Typically it is a good practice
to use value banned in such case.

• virtualOrganisations - represents an abstract federated group of the user. By default it is not
used directly anywhere in the core stack, but several subsystems (as dynamic attribute sources
or jobs accounting) may be configured to use it.

There are several attributes used for incarnation:

• xlogin - specifies which local user id (in UNIX called uid) should be assigned to the UNI-
CORE user.

• group - specifies the primary group (primary gid) that the UNICORE user should get.

• supplementaryGroups - specifies all supplementary groups the UNICORE user should get.

• addDefaultGroups - boolean attribute saying whether groups assigned to the Xlogin (i.e. the
local uid of the UNICORE user) in the operating system should be additionally added for the
UNICORE user.

• queue - define which BSS queues are allowed for the particular user.

Finally UNICORE can consume other attributes. All other attributes can be used only for autho-
rization or in more advanced setups (for instance using the UNICORE/X incarnation tweaker).
Currently all such additional attributes which are received from attribute source are treated as
XACML attributes and are put into XACML evaluation context. This feature is rather rarely
used, but it allows for creating a very fine grained authorization policies, using custom attributes.

Particular attribute source define how to assign these attribute to users. Not always all types
of attributes are supported by the attribute source, e.g. XUUDB can not define (among others)
per-user queues or VOs.

UNICORE/X Manual 37

After introducing all the special UNICORE attributes, it must be noted that those attributes are
used in two ways. Their primary role is to strictly define what is allowed for the user. For
instance the ’Xlogin’ values specify the valid uids from which the user may choose one. One
exception here is Add operating system groups - user is always able to set this according to
his/her preference.

The second way of using those attributes is to specify the default behavior, when the user is
not expressing a preference. E.g. a default Group (which must be single valued) specify which
group should be used, if user doesn’t provide any.

Attribute sources define the permitted values and default values for the attributes in various
ways. Some use conventions (e.g. that first permitted value is a default one), some use a pair of
real attributes to define the valid and default values of one UNICORE attribute.

5.2 Configuring Attribute Sources

Note
The following description is for configuring the classic, static attribute sources. However
everything written here applies also to configuration of the dynamic sources: the only dif-
ference is that instead of container.security.attributes. property prefix, the
container.security.dynamicAttributes. should be used.

Note
The full list of options related to attribute sources is available here: Section 2.8.2.

To configure the static attribute sources, the container.security.attributes.order
property in the configuration file is used. This is a space-separated list with attribute sources
names, where the named attribute sources will be queried one after the other, allowing you to
query multiple attribute sources, override values etc.

A second property, container.security.attributes.combiningPolicy, allows
you to control how attributes from different sources are combined.

For example, the following configuration snippet

#
Authorisation attribute source configuration
#
container.security.attributes.order=XUUDB FILE

#
Combining policy
#
MERGE_LAST_OVERRIDES (default), FIRST_APPLICABLE, ←↩

FIRST_ACCESSIBLE or MERGE
container.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

UNICORE/X Manual 38

will declare two attribute sources, "XUUDB" and "FILE", which should be both queried and
combined using the MERGE_LAST_OVERRIDES policy.

Since multiple attribute sources can be queried, it has to be defined how attributes will be com-
bined. For example, assume you have both XUUDB and FILE, and both return a xlogin attribute
for a certain user, say "xlogin_1" and "xlogin_2".

The different combining policies are

• MERGE_LAST_OVERRIDES : new attributes override those from previous sources. In our
example, the result would be "xlogin_2".

• FIRST_APPLICABLE : the attributes from the first source that returned a non empty list of
attributes are used. In our case this would be "xlogin_1". If there were no xlogin attribute for
the user in XUUDB then "xlogin_2" would be returned.

• FIRST_ACCESSIBLE : the attributes from the first source that is accessible are used. In our
case this would be "xlogin_1". This policy is useful for redundant attribute sources. E.g. you
can configure two instances of XUUDB with the same users data; the 2nd one will be tried
only if the first one is down.

• MERGE : attributes are merged. In our example, the result would be "xlogin_1, xlogin_2",
and the user would be able to choose between them.

Each of the sources needs a mandatory configuration option defining the Java class, and sev-
eral optional properties that configure the attribute source. In our example, one would need to
configure both the "XUUDB" and the "FILE" source:

container.security.attributes.XUUDB.class=...
container.security.attributes.XUUDB.xuudbHost=...
...

container.security.attributes.FILE.class=...
container.security.attributes.FILE.file=...
...

Additionally you can mix several combining policies together, see "Chained attribute source"
below for details.

5.3 Available attribute sources

5.3.1 XUUDB

The XUUDB is the standard option in UNICORE. It has the following features:

• Web service interface for querying and administration. It is suitable for serving data for
multiple clients. Usually it is deployed to handle attributes for a whole UNICORE site running
multiple service containers.

UNICORE/X Manual 39

• Access can be protected by a client-authenticated SSL

• XUUDB can store static mappings of UNICORE users: the local xlogin, role and project
attributes (where project maps to Unix groups)

• XUUDB since version 2 can also assign attributes in a dynamic way, e.g. from pool accounts.

• Multiple xlogins per DN, where the user can select one

• Entries are grouped using the so-called Grid component ID (GCID). This makes it easy to
assign users different attributes when accessing different UNICORE/X servers.

Full XUUDB documentation is available from http://www.unicore.eu/documentation/manuals/-
xuudb

To enable and configure the XUUDB as a static attribute source, set the following properties in
the configuration file:

container.security.attributes.order=... XUUDB ...
container.security.attributes.XUUDB.class=eu.unicore.uas.security. ←↩

XUUDBAuthoriser
container.security.attributes.XUUDB.xuudbHost=https://<xuudbhost>
container.security.attributes.XUUDB.xuudbPort=<xuudbport>
container.security.attributes.XUUDB.xuudbGCID=<your_gcid>

To enable and configure the XUUDB as a dynamic attribute source, set the following properties
in the configuration file:

container.security.dynamicAttributes.order=... XUUDB ...
container.security.dynamicAttributes.XUUDB.class=eu.unicore.uas. ←↩

security.xuudb.XUUDBDynamicAttributeSource
container.security.dynamicAttributes.XUUDB.xuudbHost=https://< ←↩

xuudbhost>
container.security.dynamicAttributes.XUUDB.xuudbPort=<xuudbport>

5.3.2 SAML Virtual Organizations aware attribute source (e.g. Unity)

UNICORE supports SAML attributes, which can be either fetched by the server or pushed
by the clients, using a Virtual Organisations aware attribute source. In the most cases Unity
is deployed as a server providing attributes and handling VOs, as it supports all UNICORE
features and therefore offers a greatest flexibility, while being simple to adopt. SAML attributes
can be used only as a static attribute source.

The SAML attribute source is described in a separate section: [?].

http://www.unicore.eu/documentation/manuals/xuudb
http://www.unicore.eu/documentation/manuals/xuudb

UNICORE/X Manual 40

5.3.3 File attribute source

This attribute source uses a single map file to map DNs to xlogin, role and other attributes (only
static mappings are possible). It is useful when you don’t want to setup an additional service
like the XUUDB, or when you want to locally override attributes for selected users (e.g. to ban
somebody).

In contrast to the XUUDB, the File attribute source can store all types of attributes, while the
XUUDB only handles role, uid and group.

To use, set

container.security.attributes.order=... FILE ...
container.security.attributes.FILE.class=eu.unicore.uas.security. ←↩

file.FileAttributeSource
container.security.attributes.FILE.file=<your map file>
container.security.attributes.FILE.matching=<strict|regexp>

The map file itself has the following format:

<?xml version="1.0" encoding="UTF-8"?>
<fileAttributeSource>

<entry key="USER DN">
<attribute name="role">

<value>user</value>
</attribute>
<attribute name="xlogin">

<value>unixuser</value>
<value>nobody</value>
...

</attribute>
...

</entry>
...

</fileAttributeSource>

You can add an arbitrary number of attributes and attribute values.

The matching option controls how a client’s DN is mapped to a file entry. In strict mode,
the canonical representation of the key is compared with the canonical representation of the
argument. In regexp mode the key is considered a Java regular expression and the argument
is matched with it. When constructing regular expressions a special care must be taken to
construct the regular expression from the canonical representation of the DN. The canonical
representation is defined here. (but you don’t have to perform the two last upper/lower case
operations). In 90% of all cases (no multiple attributes in one RDN, no special characters, no
uncommon attributes) it just means that you should remove extra spaces between RDNs.

The evaluation is simplistic: the first entry matching the client is used (which is important when
you use regular expressions).

http://download.oracle.com/javase/6/docs/api/javax/security/auth/x500/X500Principal.html#getName(java.lang.String)

UNICORE/X Manual 41

The attributes file is automatically refreshed after any change, before a subsequent read. If the
syntax is wrong then an error message is logged and the old version is used.

Recognized attribute names are:

• xlogin

• role

• group

• supplementaryGroups

• addOsGroups (with values true or false)

• queue

Attributes with those names (case insensitive) are handled as special UNICORE incarnation
attributes. The correspondence should be straightforward, e.g. the xlogin is used to provide
available local OS user names for the client.

For all attributes except of the supplementaryGroups the default value is the first one
provided. For supplementaryGroups the default value contains all defined values.

You can also define other attributes - those will be used as XACML authorization attributes,
with XACML string type.

5.3.4 PAM

This is a special attribute source which only works in conjunction with the corresponding REST
authentication module.

container.security.attributes.order=... PAM ...
container.security.attributes.PAM.class=eu.unicore.services.rest. ←↩

security.PAMAttributeSource

5.3.5 Chained attribute source

Chained attribute source is a meta source which allows you to mix different combining policies
together. It is configured as other attribute sources with two parameters (except of its class):
order and combiningPolicy. The result of the chain attribute source is the set of attributes
returned by the configured chain.

Let’s consider the following example situation where we want to configure two redundant Unity
servers (both serving the same data) to achieve high availability. Additionally we want to over-
ride settings for some users using a local file attribute source (e.g. to ban selected users, by
assigning them the banned role).

UNICORE/X Manual 42

The main chain configuration:
container.security.attributes.order=UNITY_CLUSTER FILE
container.security.attributes.combiningPolicy=MERGE_LAST_OVERRIDES

The FILE source cfg:
container.security.attributes.FILE.class=eu.unicore.uas.security. ←↩

file.FileBasedAuthoriser
container.security.attributes.FILE.file=<your map file>

The UNITY_CLUSTER is a sub chain:
container.security.attributes.UNITY_CLUSTER.class=de.fzj.unicore. ←↩

uas.security.util.AttributeSourcesChain
container.security.attributes.UNITY_CLUSTER.order=UNITY1 UNITY2
container.security.attributes.UNITY_CLUSTER.combiningPolicy= ←↩

FIRST_ACCESSIBLE

And configuration of the two real sources used in the sub chain:
container.security.attributes.UNITY1.class=...
...
container.security.attributes.UNITY2.class=...
...

6 RESTful services

6.1 Authentication

RESTful services require configuration of the available mechanisms for end user authentication,
which will check the supplied credentials and map the user to a distinguished name (DN).

This configuration is done in the container config file (typically uas.config or container.properties).

The enabled authentication options and their order are configured similarly to the attribute
sources, using a list of enabled mechanisms. For example

container.security.rest.authentication.order=FILE UNITY-OAUTH X509

As you can see, you can use one or more authentication methods, UNICORE will try all con-
figured authentication options in order.

For each enabled option, a set of additional properties is used to configure the details (for ex-
ample the Unity address)

6.1.1 Username-password file

The FILE mechanism uses a map file containing username, password and the DN. Required
configuration is the location of the file.

UNICORE/X Manual 43

container.security.rest.authentication.FILE.class=eu.unicore. ←↩
services.rest.security.FilebasedAuthenticator

container.security.rest.authentication.FILE.file=conf/rest-users. ←↩
txt

The file format is

#
on each line:
username:hash:salt:DN
#
demouser:<...>:<...>:CN=Demo User, O=UNICORE, C=EU

i.e. each line gives the username, the hashed password, the salt and the user’s DN, separated by
colons. To generate entries, i.e. to hash the password correctly, the md5sum utility can be used.
For example, if your intended password is test123, you could do

$> SALT=$(tr -dc "A-Za-z0-9_$&!=+#" < /dev/urandom | head -c 16 | ←↩
xargs)

$> echo "Salt is ${SALT}"
$> echo -n "${SALT}test123" | md5sum

which will output the salted and hashed password. Here we generate a random string as the salt.
Enter these together with the username, and the DN of the user into the password file.

6.1.2 Unity authentication using OAuth2 Bearer token

This mechanism uses the OAuth2 token sent from the client (HTTP "Authorization: Bearer . . . "
header) to authenticate to Unity. In Unity terms, this uses the endpoint of type "SAMLUnicore-
SoapIdP" with authenticator of type "oauth-rp with cxf-oauth-bearer".

container.security.rest.authentication.UNITY-OAUTH.class=eu.unicore ←↩
.services.rest.security.UnityOAuthAuthenticator

container.security.rest.authentication.UNITY-OAUTH.address=https:// ←↩
localhost:2443/unicore-soapidp-oidc/saml2unicoreidp-soap/ ←↩
AuthenticationService

validate the received assertions?
container.security.rest.authentication.UNITY-OAUTH.validate=true

UNICORE must be configured to trust the assertions issued by the Unity server, please refer to
the relevant section on trusted assertion issuers in the manual.

6.1.3 Unity authentication using username/password

This mechanism takes the username/password sent from the client (HTTP Basic auth) and uses
this to authenticate to Unity, retrieving an authentication assertion.

UNICORE/X Manual 44

container.security.rest.authentication.UNITY.class=eu.unicore. ←↩
services.rest.security.UnitySAMLAuthenticator

container.security.rest.authentication.UNITY.address=https:// ←↩
localhost:2443/unicore-soapidp/saml2unicoreidp-soap/ ←↩
AuthenticationService

validate the received assertions?
container.security.rest.authentication.UNITY.validate=true

UNICORE must be configured to trust the assertions issued by the Unity server, please refer to
the relevant section on trusted assertion issuers in the manual.

6.1.4 X.509 certificate

UNICORE supports X.509 client certificates for authentication.

container.security.rest.authentication.order= ... X509 ...

container.security.rest.authentication.X509.class=eu.unicore. ←↩
services.rest.security.X509Authenticator

NOTE that this requires Gateway 7.3.0 or later.

6.1.5 PAM

This authentication module allows to authenticate users with the username and password that
they have on the UNICORE/X system.

container.security.rest.authentication.order= ... PAM ...

container.security.rest.authentication.X509.class=eu.unicore. ←↩
services.rest.security.PAMAuthenticator

container.security.rest.authentication.X509.DNTemplate=CN=%s, OU= ←↩
pam-local-users

The parameter "DNTemplate" is used to define which DN will be assigned to authenticated
users, where the "%s" will be replaced by the user name. In the example above, user "test-user"
will have the DN "CN=test-user, OU=pam-local-users".

There is also a PAM attribute source that you can use to automatically assign role="user" as
well the Unix login and groups correctly for authenticated users.

container.security.attributes.order= ... PAM ...
container.security.attributes.PAM.class=eu.unicore.services.rest. ←↩

security.PAMAttributeSource

UNICORE/X Manual 45

6.1.6 OAuth2 authentication using a Bearer token

It is also possible to directly authenticate to an OAuth2 server, contact unicore-support for
details.

6.2 JWT Delegation

Beginning with UNICORE 8.0.0, delegation is fully supported for REST services. The delegat-
ing server creates a JWT token containing user authentication information and signs it with its
private key. The receiving server can check the signature using the sender’s public key.

Public keys are distributed via the shared service Registry.

The lifetime of the issued tokens is 300 seconds by default, which can be changed via

container.security.rest.jwt.lifetime=300

For very simple cases, e.g. when no shared registry is used, a shared hmac secret can be config-
ured as well. The length of the secret must be at least 32 characters

container.security.rest.jwt.hmacSecret=....

This secret must be the same on all the UNICORE servers that are supposed to trust each other.

7 The UNICORE persistence layer

UNICORE stores its state in data bases. The information that is stored depends on the services
that are running in the container, and can include

• user’s resources (instances of storage, job and other services)

• jobs

• workflows

etc.

The job directories themselves reside on the target system, but UNICORE keeps additional
information (like, which UNICORE user owns a particular job).

The data on user resources is organised by service name, i.e. each service (for example, Job-
Management) stores its information in a separate database table (having the same name as the
service, e.g. "JobManagement").

The UNICORE persistence layer offers three kinds of storage:

• on the filesystem of the UNICORE/X server (using the H2 database engine), which is gener-
ally the default;

UNICORE/X Manual 46

• on a database server (MySQL, or the "server mode" of H2);

• in-memory, i.e. all info is lost on server restart.

While the first one is very easy to setup, and easy to manage, the second option allows advanced
setups like clustering/load balancing configurations involving multiple UNICORE/X servers
sharing the same persistent data. Using MySQL has the additional benefit that the server starts
up faster.

Data migration from one database system to another is in principle possible, but you should
select the storage carefully before going into production. In general, if you do not require
clustering/load balancing, you should choose the default filesystem option, since it is less ad-
ministrative effort.

7.1 Configuring the persistence layer

Peristence properties are configured in two files:

• container.properties for all service data

• xnjs.properties for job data

It is recommended to specify a configuration file using the persistence.config property.
Thus, persistence configuration can be easily shared between the job (XNJS) data and other
service data. If the "persistence.config" property is set, the given file will be read as a Java
properties file, and the properties will be used.

Note
All properties can be specified on a "per table" basis, by appending ".<TABLENAME>" to the
property name. This means you can even select different storage systems for different data,
e.g. store service data on the filesystem and jobs in MySQL. The table name is case-sensitive.

Property name Type Default
value /
mandatory

Description

persistence.cache.enable[.*][true, false] can
have subkeys

true Enable caching.

persistence.cache.maxSize[.*]integer number
can have
subkeys

10 Maximum number of
elements in the cache
(default: 10).

persistence.class[.*]string can have
subkeys

de.fzj.unicore.persist.impl.H2PersistThe persistence
implementation class,
which controls with DB
backend is used.

UNICORE/X Manual 47

Property name Type Default
value /
mandatory

Description

persistence.cluster.config[.*]string can have
subkeys

- Clustering configuration
file.

persistence.cluster.enable[.*][true, false] can
have subkeys

false Enable clustering mode.

persistence.configfilesystem path - Allows to specify a separate
properties file containing
the persistence
configuration.

persistence.database[.*]string can have
subkeys

- The name of the database to
connect to (e.g. when using
MySQL).

persistence.directory[.*]string can have
subkeys

- The directory for storing
data (embedded DBs).

persistence.driver[.*]string can have
subkeys

- The database driver. If not
set, the default one for the
chosen DB backend is used.

persistence.h2.cache_size[.*]integer number
can have
subkeys

1024 (H2) Cache size.

persistence.h2.options[.*]string can have
subkeys

- (H2) Further options
separated by ;.

persistence.h2.server_mode[.*][true, false] can
have subkeys

false (H2) Connect to a H2
server.

persistence.host[.*]string can have
subkeys

localhost The database host.

persistence.max_connections[.*]integer number
can have
subkeys

1 Connection pool maximum
size.

persistence.mysql.tabletype[.*]string can have
subkeys

MyISAM (MySQL) Table type
(engine) to use.

persistence.mysql.timezone[.*]string can have
subkeys

UTC (MySQL) Server timezone.

persistence.mysql.useSSL[.*][true, false] can
have subkeys

false (MySQL) Connect using
SSL.

persistence.password[.*]string can have
subkeys

empty
string

The database password.

persistence.pool_timeout[.*]integer number
can have
subkeys

3600 Connection pool timeout
when trying to get a
connection.

persistence.port[.*]integer number
can have
subkeys

3306 The database port.

UNICORE/X Manual 48

Property name Type Default
value /
mandatory

Description

persistence.user[.*]string can have
subkeys

sa The database username.

7.1.1 Caching

By default, caching of data in memory is enabled. It can be switched off and configured on a
per-table (i.e. per entity class) basis. If you have a lot of memory for your server, you might
consider increasing the cache size for certain components.

For example, to set the maximum size of the JOBS cache to 1000, you’d configure

persistence.cache.maxSize.JOBS=1000

7.1.2 The H2 engine

H2 is a pure Java database engine. It can be used in embedded mode (i.e. the engine runs in-
process), or in server mode, if multiple UNICORE servers should use the same database server.
For more information, visit http://www.h2database.com

Connection URL

In H2 server mode, the connection URL is constructed as follows

jdbc:h2:tcp://<persistence.host>:<persistence.port>/<persistence. ←↩
directory>/<table_name>

7.1.3 The MySQL Engine

The MySQL database engine does not need an introduction. To configure its use for UNICORE
persistence data, you need to set

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist

To use MySQL, you need access to an installed MySQL server. It is beyond the scope of this
guide to describe in detail how to setup and operate MySQL. The following is a simple sequence
of steps to be performed for setting up the required database structures.

• open the mysql console

• create a dedicated user, say unicore who will connect from some server in the domain "your-
domain.com" or from the local host:

http://www.h2database.com

UNICORE/X Manual 49

CREATE USER ’unicore’@’%.yourdomain.com’ identified by ’ ←↩
some_password’ ;

CREATE USER ’unicore’@’localhost’ identified by ’some_password’ ;

• create a dedicated database for use by the UNICORE/X server:

CREATE DATABASE ’unicore_data_demo_site’;
USE ’unicore_data_demo_site’;

• allow the unicore user access to that database:

GRANT ALL PRIVILEGES ON ’unicore_data_demo_site.*’ to ’unicore’@’ ←↩
localhost’;

GRANT ALL PRIVILEGES ON ’unicore_data_demo_site.*’ to ’unicore’@’%. ←↩
yourdomain.com’;

The UNICORE persistence properties would in this case look like this:

persistence.class=de.fzj.unicore.persist.impl.MySQLPersist
persistence.database=unicore_data_demo_site
persistence.user=unicore
persistence.password=some_password
persistence.host=<your_mysql_host>
persistence.port=<your_mysql_port>
persistence.mysql.tabletype=MyISAM

If you want to store data from multiple UNICORE servers, make sure to use a different database
for each of them.

7.2 Clustering

If you intend to run a configuration with multiple UNICORE servers accessing a shared database,
you need to enable clustering mode by setting a property

persistence.cluster.enable=true

The clustering config file can be set using a (per-table) property

persistence.cluster.config=<path to config file>

If this is not set, a default configuration is used.

For clustering, the Hazelcast library is used (https://hazelcast.org/documentation). A basic TCP
based configuration is

https://hazelcast.org/documentation

UNICORE/X Manual 50

<hazelcast xmlns="http://www.hazelcast.com/schema/config">
<group>

<name>persistence-dev</name>
<password>dev-pass</password>

</group>
<network>

<port auto-increment="true">5701</port>
<join>

<multicast enabled="false"/>
<tcp-ip enabled="true">

<!-- list other members of the cluster -->
<member>127.0.0.1</member>
<member>some.host.org</member>

</tcp-ip>
</join>

</network>
</hazelcast>

The most important part is the "tcp-ip" setting, which must list at least one other node in the
cluster. The "group" setting allows to run multiple clusters on the same set of hosts, just make
sure that the group name is the same for all nodes in a cluster.

8 Configuring the XNJS

The XNJS is an internal UNICORE/X component that deals with the actual job execution and
file system access. It is configured using a properties file named xnjs.properties. It is include’d
from the main config file.

Here’s an overview of the most important properties that can be set in this file.

Property name Type Default
value /
mandatory

Description

XNJS.allowUserExecutable[true, false] true Whether to allow
user-defined executables. If
set to false, only
applications defined in the
IDB may be run.

XNJS.autosubmit [true, false] false Automatically submit a job
to the BSS without waiting
for an explicit client start.

XNJS.bssResubmitCountinteger >= 1 3 How often should
UNICORE/X try to submit
a job to the BSS.

UNICORE/X Manual 51

Property name Type Default
value /
mandatory

Description

XNJS.bssResubmitDelayinteger >= 1 10 Minimum delay (in
seconds) between attempts
to submit a job to the BSS.

XNJS.filespace string - Directory on the TSI for the
job directories. Must be
world
read/write/executable.

XNJS.filespaceUmaskinteger number 0002 Umask to be used for
creating the base directory
for job directories.

XNJS.idbfile[.*] string can have
subkeys

- IDB configuration.

XNJS.idbtype string json IDB format: json (default)
or xml

XNJS.incarnationTweakerConfigstring not set Path to configuration file
for the incarnation tweaker
subsystem. If not set, the
subsystem will be disabled.

XNJS.localtsi[.*] string can have
subkeys

- Properties for configuring
the embedded Java TSI (if
used). See separate docs.

XNJS.numberofworkersinteger >= 0 4 Number of XNJS worker
threads.

XNJS.parameterSweepLimitinteger >= 0 1000 Upper limit for number of
jobs generated in a single
parameter sweep.

XNJS.staging[.*] string can have
subkeys

- Properties for configuring
the data staging and I/O
components. See separate
docs.

XNJS.staging.addWaitingLoop[true, false] false Whether to add a waiting
loop for files to appear on
shared filesystems.

XNJS.staging.filesystemGraceTimeinteger >= 1 10 Grace time (in seconds)
when waiting for files to
appear on shared
filesystems.

UNICORE/X Manual 52

Property name Type Default
value /
mandatory

Description

XNJS.strictUserInputChecking[true, false] true Whether to be restrictive in
checking user-supplied
arguments and environment
variables. Set to true if you
do not want ANY user code
to run on your TSI node.

Most of the other settings in this file are used to configure the internals of the XNJS and should
usually be left at their default values.

8.1 The UNICORE TSI

This section describes installation and usage of the UNICORE TSI. This is a mandatory step if
you want to interface to batch systems such as Slurm to efficiently use a compute cluster.

Note
Without this component, all jobs will run on the UNICORE/X server, under the user id that
started UNICORE/X.

In a nutshell, you have to perform the following steps

• Install the UNICORE TSI on your cluster front end node

• Edit the tsi.properties file

• On the UNICORE/X server, edit uas.config, simpleidb and xnjs.properties

• Start the newly installed TSI (as root in a multiuser setting)

• Restart UNICORE/X

8.1.1 Installation of the correct TSI

The TSI is a service that is running on the target system. In case of a cluster system, you’ll need
to install it on the frontend machine(s), i.e. the machine from where your jobs are submitted to
the batch system. There are different variants available for the different batch systems such as
Torque or SGE.

Usually installation and start of the TSI will be performed as the root user. The TSI will then
be able to change to the current Grid user’s id for performing work (Note: nothing will ever be

UNICORE/X Manual 53

executed as "root"). You can also use a normal user, but then all commands will be executed
under this user’s id.

As the TSI is a central and sensitive service, make sure to read its documentation. This guide
serves just as a quick overview of the necessary steps.

• First, download and install the UNICORE TSI package. The UNICORE core server bundle
("quickstart" package) includes the TSI in the tsi subdirectory. You should copy this folder to
the correct machine first. In the following this will be denoted by <tsidir>

• Install the correct TSI variant by

cd <tsidir>
./Install.sh

When prompted for the path, choose an appropriate on, denoted <your_tsi> in the following

• Check the TSI configuration, especially command locations, path settings etc.

8.1.2 Required TSI Configuration

Configuration is done by editing <tsi_conf_dir>/tsi.properties At least check the following set-
tings:

UNICORE/X machine
tsi.njs_machine=<UNICORE/X host>

UNICORE/X listener port (check unicorex/conf/xnjs_legacy.xml ←↩
variable "CLASSICTSI.replyport"

tsi.njs_port=7654

TSI listener port (check unicorex/conf/xnjs_legacy.xml variable " ←↩
CLASSICTSI.port"

tsi.my_port=4433

8.1.3 UNICORE/X configuration

Edit unicorex/conf/uas.config and check that the "xnjs.properties" file is included

read XNJS/TSI config
$include.XNJS conf/xnjs.properties

Edit unicorex/conf/xnjs.properties. Check the filespace location, this is where the local job di-
rectories will be created. On a cluster, these have to be on a shared part of the filesystem.
Also, the filespace location has to be read/write/executable for the current user. If you wish to

UNICORE/X Manual 54

avoid a world-executable directory, it is possible to use a per-user location, like $HOME/UNI-
CORE_Jobs.

Check the CLASSICTSI related properties. Set the correct value for the machine and the ports
(these can usually be left at their default values). The CLASSICTSI.machine property is a
comma separated list of machines names or IP addresses. Optionally, a port number can be
added to each entry, separated from the machine by a colon. The XNJS will establish connec-
tions to each of these machines and ports in a round-robin fashion to ensure that jobs can be
submitted and job statuses retrieved even if one of the TSI instances is unavailable. Should the
port not be given along with the machine, CLASSICTSI.port will be used as a default.

Here is an small example.

XNJS.filespace=$HOME/UNICORE_Jobs/
XNJS.idbfile=/opt/unicore/unicorex/conf/simpleidb

CLASSICTSI.machine=login.mycluster.com
CLASSICTSI.port=4433
CLASSICTSI.replyport=7654
CLASSICTSI.priveduser=unicore

XNJS.staging.wget=wget --no-check-certificate

8.1.4 Communication parameters

Some additional parameters exist for tuning the XNJS-TSI communication.

Table 9: XNJS-TSI communication settings

property name range of values default value description
CLASSICTSI.BUFFERSIZEinteger 1000000 Buffersize for

filetransfers in
bytes

CLASSICTSI.socket.timeoutinteger 300000 Socket timeout in
milliseconds

CLASSICTSI.socket.connect.timeoutinteger 10000 Connection timeout
in milliseconds

8.1.5 Tuning the batch system settings

UNICORE uses the normal batch system commands (e.g. qstat) to get the status of running
jobs. There is a special case if a job is not listed in the qstat output. UNICORE will then

UNICORE/X Manual 55

assume the job is finished. However, in some cases this is not true, and UNICORE will have a
wrong job status. To work around, there is a special property

how often the XNJS will re-try to get the status of a job
in case the job is not listed in the status listing
CLASSICTSI.statusupdate.grace=2

If the value is larger than zero, UNICORE will re-try to get the job status.

Note
When changing TSIs, it’s a good idea to remove the UNICORE/X state and any files before
restarting. See Section 7 for details

8.1.6 Enabling SSL for the XNJS to TSI communication

The UNICORE/X server can be set up to use SSL for communicating with the UNICORE TSI.
On the UNICORE/X side, this is very simple to switch on. In the XNJS config file, set the
following property to false (by default it is set to true):

enable SSL -
CLASSICTSI.ssl.disable=false

To setup the TSI side, please refer to the TSI manual!

8.1.7 Using an SSH tunnel for the XNJS to TSI communication

In the special case that the XNJS callback port is not accessible from the TSI server, you may
want to use an SSH tunnel configuration. For example, this case occurs if the TSI is running in
a different location (e.g. an Amazon cloud) than the UNICORE/X server.

We recommend using the tool "autossh", and adding the tunnel setup to to your UNICORE/X
start script.

Here is an example how to do this

killall -g autossh
autossh -M 0 -f -o "ExitOnForwardFailure=yes" -o " ←↩

ServerAliveInterval 30"
-o "ServerAliveCountMax 3" -4 -N
-L 4433:localhost:4433
-R 7654:localhost:7654
-i path_to_key remoteuser@remote.server.org

8.1.8 TSI configuration parameter reference

Here is a full list of TSI-related parameters.

UNICORE/X Manual 56

Property name Type Default
value /
mandatory

Description

CLASSICTSI.BUFFERSIZEinteger >= 1 1048576 Buffer size (in bytes) for
transferring data from/to
the TSI.

CLASSICTSI.CD string cd Unix cd command.
CLASSICTSI.CHGRP string /bin/chgrpUnix chgrp command.
CLASSICTSI.CHMOD string /bin/chmodUnix chmod command.
CLASSICTSI.CP string /bin/cp Unix cp command.
CLASSICTSI.FSID string - TSI filesystem identifier

which uniquely identifies
the file system. The default
value uses the
CLASSICTSI.machine
property.

CLASSICTSI.GROUPS string groups Unix groups command.
CLASSICTSI.LN string /bin/ln

-s
Unix ln command.

CLASSICTSI.MKDIR string /bin/mkdir
-p

Unix directory creation
command.

CLASSICTSI.MKFIFO string /bin/mkfifoUnix mkfifo command.
CLASSICTSI.MV string /bin/mv Unix mv command.
CLASSICTSI.PERL string /usr/bin/perlPerl interpreter.
CLASSICTSI.PS string ps -e Command to get the

process list on the TSI
node.

CLASSICTSI.RM string /bin/rm Unix rm command.
CLASSICTSI.RMDIR string /bin/rm

-rf
Unix directory removal
command.

CLASSICTSI.UMASK string umask Unix umask command.
CLASSICTSI.interactive_execution.disable[true, false] false Disable execution of user

commands on the TSI node.
CLASSICTSI.interactive_execution.maxtimeinteger number -1 Limit the run time of user

commands on the TSI node
(-1 means no limit).

CLASSICTSI.limitTSIConnectionsinteger number -1 Limit the total number of
TSI worker processes
created by this
UNICORE/X (-1 means no
limit).

CLASSICTSI.machinestring localhost TSI host(s) or IP
address(es). Specify
multiple hosts in the format
ma-
chine1[:port1],machine2[:port2],. . .

UNICORE/X Manual 57

Property name Type Default
value /
mandatory

Description

CLASSICTSI.pooledTSIConnectionsinteger >= 1 4 How many TSI worker
processes per TSI host to
keep (even if idle).

CLASSICTSI.port integer >= 1 4433 TSI port to connect to.
CLASSICTSI.priveduserstring unicore Account used for getting

statuses of all batch jobs
(cannot be root).

CLASSICTSI.replyportinteger >= 1 7654 Reply port on UNICORE/X
server.

CLASSICTSI.reservationAdminUserstring unicore Account used for making
reservations (cannot be
root). If null, the current
user’s login will be used.

CLASSICTSI.reservationEnabled[true, false] false Whether to enable the
reservation interface.

CLASSICTSI.socket.connect.timeoutinteger >= 0 10 Connection timeout
(seconds) on when
establishing (or checking)
the TSI connection. Set to 0
for no timeout.

CLASSICTSI.socket.no_check_matching_ips[true, false] false Disable checking if IP
address(es) of
command/data socket
callbacks are as expected.

CLASSICTSI.socket.timeoutinteger >= 0 180 Read timeout (seconds) on
the TSI connection. Set to 0
for no timeout.

CLASSICTSI.ssl.disable[true, false] true Whether to disable SSL for
the TSI-UNICORE/X
connection.

CLASSICTSI.statusupdate.graceinteger >= 1 2 How many times the XNJS
will re-check job status in
case of a lost job.

CLASSICTSI.statusupdate.intervalinteger >= 1 10000 Interval (ms) for updating
job statuses on the batch
system.

8.2 Operation without a UNICORE TSI

In some situations (e.g. in a Windows-only environment) you will not use the UNICORE TSI,
which is designed for multi-user Unix environments. The XNJS can run code in an "embedded"
mode on the UNICORE/X machine. Note that this is without user switching, and inherently not

UNICORE/X Manual 58

secure as user code can access potentially sensitive information, such as configuration data.
Also, there is no separation of users.

Embedded mode is enabled in xnjs.properties file by setting

coreServices.targetsystemfactory.tsiMode=embedded

The embedded mode can be configured with a set of properties which are listed in the following
table.

Property name Type Default
value /
mandatory

Description

XNJS.localtsi.jobLimitinteger number 0 Maximum number of
concurrent jobs, if set to a
value >0. Default is no
limit.

XNJS.localtsi.shellstring /bin/bash Default UNIX shell to use
(if shell is used).

XNJS.localtsi.useShell[true, false] true Should a UNIX shell be
used to execute jobs.

XNJS.localtsi.workerThreadsinteger >= 1 4 Number of worker threads
used to execute jobs.

9 The IDB

The UNICORE IDB (incarnation database) contains information on the target system capabil-
ities (like number of nodes, CPUs etc) and allowing to check client resource requests against
these.

The second IDB function is to define abstract application definitions that are then mapped onto
concrete executables. This process (called "incarnation") is performed by the XNJS component.

9.1 Defining the IDB location

The IDB file is defined by the property "XNJS.idbfile", which must point to a file or directory
on the UNICORE/X machine which is readable by the UNICORE/X process.

9.1.1 Using an IDB directory

While the IDB can be put into a single file, it can be convenient to use multiple files. In this
case, the property "XNJS.idbfile" points to a directory. The information from all files in this
directory is merged.

UNICORE/X Manual 59

When using a directory, you can optionally specify a "main" IDB file containing applications,
resources, properties etc. From other files, only Applications will be read. A main IDB file is
defined via "XNJS.idbfile.main"

9.1.2 User-specific applications (IDB extensions)

Sometimes it is required to define special applications for (groups of) users, and even let users
define their own applications. This means that the set of available applications differs between
users.

User specific applications can be defined using additional properties, for example like this:

XNJS.idbfile.ext.1=/opt/staff/unicore/*.xml
XNJS.idbfile.ext.2=$HOME/.unicore/*.xml
XNJS.idbfile.ext.3=$WORK/projects/apps/*.xml

These paths are resolved on the TSI machine, NOT on UNICORE/X. As you can see, they can
contain variables (using $VARIABLE syntax WITHOUT curly braces!). Make sure that the
numbering is consistent (ext.1,ext.2,. . .).

Note
Some UNICORE features such as brokering in workflows might not (yet) work with user-
specific applications!

9.1.3 Examples for IDB setup

Here are a few common IDB config examples

Single IDB file (default)

XNJS.idbfile=/etc/unicore/unicorex/simpleidb

IDB directory, all files are merged

XNJS.idbfile=/etc/unicore/unicorex/idb/

IDB directory, main file defined, read apps from all other files

XNJS.idbfile=/etc/unicore/unicorex/applications/
XNJS.idbfile.main=/etc/unicore/unicorex/simpleidb

IDB directory, main file defined, user-specific extension

XNJS.idbfile=/etc/unicore/unicorex/applications/
XNJS.idbfile.main=/etc/unicore/unicorex/simpleidb
XNJS.idbfile.ext.1=$HOME/.unicore/apps/*.xml

UNICORE/X Manual 60

9.2 IDB syntax description

Starting with UNICORE 8.0, the IDB is written in JSON. This documentation focuses on the
JSON format.

Note
The older XML format is deprecated, but still supported. It is limited to a single partition, i.e. a
single set of resource limits (number of nodes / CPUs etc). For reference, the schema for the
XML̀ IDB can be found at http://svn.code.sf.net/p/unicore/svn/xnjs/trunk/src/main/schema/-
idb.xsd

The IDB contains Partitions, Applications, Submit/Excute script templates and Info elements,
all of which will be described below. Additionally the administrator can customize the script
template that is used to

Applications can also be defined in separate files (if using a directory)

{
"Partitions" : {},

"Info" : {},

"Applications" : [],

"ExecuteScriptTemplate" : "...",

"SubmitScriptTemplate" : "...",

}

9.2.1 Partitions

Each Partition corresponds essentially to a batch queue. Each partition may have its own run-
time limits, number of CPUs etc.

Let’s look at an example first. In the IDB file

{
"Partitions": {

"batch" : {
"IsDefaultPartition": "true",
"Description": "Default batch queue",
"OperatingSystem": "LINUX",
"OperatingSystemVersion": "4.15.0-62-generic / Ubuntu 18.04",
"CPUArchitecture": "x86_64",
"Resources": {

http://svn.code.sf.net/p/unicore/svn/xnjs/trunk/src/main/schema/idb.xsd
http://svn.code.sf.net/p/unicore/svn/xnjs/trunk/src/main/schema/idb.xsd

UNICORE/X Manual 61

"Nodes": "1-64:1",
"CPUsPerNode": "4",
"TotalCPUs": "4-256",
"Runtime": "1-72000:3600",

},
},

"dev" : {
"Description": "Development queue",
"OperatingSystem": "LINUX",
"CPUArchitecture": "x86_64",
"Resources": {
"Nodes": "1-4:1",
"CPUsPerNode": "4",
"TotalCPUs": "4-16",
"Runtime": "1-3600:10m",

},
},

}

If you have more than one Partition, make sure to set one as the default using the element

"IsDefaultPartition": "true",

Resources

Here you can specify things like number of nodes, job runtime (wall time!) CPUs per node,
total number of CPUs, etc.

Integer-valued capabilities are specified with a range and an optional default, for example:

"Nodes" : "1-64:1",

or in a more verbose style:

"Nodes" : {
"Range": "1-64",
"Default": "1",

}

If a default is specified, the resource is part of the site’s default resource set, and a value will be
always be sent to the TSI.

If NO default is specified, the resource request will only be sent to the TSI if the user has
requested it in her job.

A number of standard resource names exist, which a system should adhere to, in order to make
user jobs as portable as possible. You may choose to not specify some of them, if they do not

UNICORE/X Manual 62

make sense on your system. For example, some sites do not allow the user to explicitely select
nodes and processors per node, but only "total number of CPUs", or only "Nodes".

• Runtime : The wall clock time (integer). You can use the usual units ("m", "h", "d"), e.g.
"12h"

• Nodes : The number of nodes (integer)

• CPUsPerNode : The number of CPUs per node (integer)

• TotalCPUs : The total number of CPUs (integer)

• Memory : The amount of memory per node in bytes (integer). You can use the usual units
("k", "M", G"), e.g. "128G"

• NodeConstraints : Identifiers for requesting specific node types (list of values)

• QoS : Quality of service required by the job (list of values)

"NodeConstraints" : {
"Type": "CHOICE",
"AllowedValues" : ["gpu", "mc"],
}

Support for array jobs

Many resource managers support submission of job arrays, i.e. multiple similar jobs are sub-
mitted at the same time, where the user can control two things: how many jobs are submitted,
and how many jobs run at the same time.

To enable this feature, the site administrator needs to define two resources in the IDB parti-
tion(s), named "ArraySize" and "ArrayLimit".

Consider the following example:

"ArraySize" : "1-100:1",
"ArrayLimit" : "1-100:10",

The array size and limit are passed to the TSI via

#TSI_ARRAY 0-99
#TSI_ARRAY_LIMIT 10

The TSI also sets an environment variable in the job script that corresponds to the "task id", i.e.
the ID of the current job instance:

UC_ARRAY_TASK_ID = "22"; export UC_ARRAY_TASK_ID

UNICORE/X Manual 63

9.2.2 Other types of resources

Most HPC sites have special settings that cannot be mapped to the generic resource elements
shown in the previous section. Therefore UNICORE allows to define custom system settings
and allow users to request these in their UNICORE jobs.

UNICORE/X will send these to the TSI in upper case, with a "#TSI_SSR_" prefix, e.g.

#!/bin/sh
#TSI_SUBMIT
...
#TSI_SSR_GPUS 4
....

9.2.3 Script templates

If you need to modify the scripts that are generated by UNICORE/X and sent to the TSI, you
can achieve this using two entries in the IDB.

"SubmitScriptTemplate" : "#!/bin/sh \n #COMMAND \n#RESOURCES \n# ←↩
SCRIPT \n",

"ExecuteScriptTemplate" : "#!/bin/sh \n#COMMAND \n#RESOURCES \n# ←↩
SCRIPT \n"

(JSON requires this as a single-line string)

The SubmitScriptTemplate is used for batch job submission, the ExecuteScriptTemplate is used
for everything else (e.g. creating directories, resolving user’s home, etc)

UNICORE/X generates the TSI script as follows:

• "#COMMAND" entry will be replaced by the action for the TSI, e.g. "#TSI_SUBMIT".

• (for submit)the "#RESOURCES" will be replaced by the resource requirements, e.g. "#TSI_NODES=. . . "

• "#SCRIPT" will be the user script / the executed command

Modifying these templates can be used to perform special actions, such as loading modules,
or changing the shell (but use something compatible to sh). For example, to add some special
directory to the path for user scripts submitted in batch mode, you could use

"SubmitScriptTemplate" :
"#!/bin/bash \n#COMMAND \n#RESOURCES \nLD_LIBRARY_PATH= ←↩

$LD_LIBRARY_PATH:/opt/openmpi-2.1/lib; export LD_LIBRARY_PATH \ ←↩
nPATH=$PATH:/opt/openmpi-2.1/bin; export PATH \n#SCRIPT \n",

UNICORE/X Manual 64

Note
Make sure that the commands added to the ExecuteScriptTemplate DO NOT generate any
output on standard out or standard error! Always redirect any output to /dev/null

For example

"ExecuteScriptTemplate" :
"#!/bin/bash \n#COMMAND \nmodule load java-11 > /dev/null 2>&1 \n# ←↩

SCRIPT \n",

9.2.4 Info

Simple key-value pairs can be entered into the IDB which are then accessible client-side. This
is very useful for conveying system-specifics to client code and also to users.

Here is an example

{
"Info" : {
"ssh-host" : "login.cluster.com",
"admin-email" : "root@cluster.com",

},
}

These pieces of information are accessible client side as part of the target system properties.

9.2.5 Summary

Table 10: Translation of standard resource names to TSI parameters

Resource TSI parameter
Name of the selected partition #TSI_QUEUE
Accounting project (from job) #TSI_PROJECT

Runtime #TSI_TIME
Nodes #TSI_NODES
CPUsPerNode #TSI_PROCESSORS_PER_NODE
TotalCPUs #TSI_TOTAL_PROCESSORS
NodeConstraints #TSI_BSS_NODES_FILTER
QoS #TSI_QOS
MemoryPerNode #TSI_MEMORY

ArraySize #TSI_ARRAY
ArrayLimit #TSI_ARRAY_LIMIT

UNICORE/X Manual 65

Table 10: (continued)

Resource TSI parameter

Other resources #TSI_SSR_<name>

9.3 IDB Application definitions

Apart from describing the available queues and their associated resources, the most important
functionality of the IDB is defining applications.

Applications can be defined in the main IDB file,

{
Applications: [
{ Name: Date, ... },
{ Name: "Python script", ... },

],
}

or in separate files (one application per file).

Here is a quick overview of the available elements, which will be documented in detail below.

Table 11: JSON IDB Application

Tag Type Description Optional/mandatory
Name String Application name Mandatory
Version String Application version Mandatory
Description String Application

description
Optional

Executable String Executable Mandatory
Arguments List of strings Command line

arguments
Optional

Environment Map of strings Environment values Optional

PreCommand String Pre-processing
executed on the
login node

Optional

PostCommand String Post-processing
executed on the
login node

Optional

Prologue String Pre-processing in
the batch script

Optional

UNICORE/X Manual 66

Table 11: (continued)

Tag Type Description Optional/mandatory
Epiloge String Post-processing in

the batch script
Optional

Parameters Map Metadata for
application
arguments /
parameters

Optional

Resources Map Application-
specific resource
requests

Optional

RunOnLoginNode "true"/"false" Run job on login
node

Optional,
default=false

IgnoreNonZeroExitCode"true"/"false" Don’t fail the job if
app exits with
non-zero exit code

Optional,
default=true

Here is an example:

{
Name: "Python script",
Version: "3.4",
Description: "Python 3 interpreter",
Executable: "/usr/bin/python3",
Arguments: [

"-d$DEBUG?",
"-vVERBOSE?",
"$OPTIONS?",
"$SOURCE?",
"$ARGUMENTS",

],

Parameters: {
"SOURCE": {Type: "filename"},
"ARGUMENTS": {Type: "string"},
"DEBUG": {Type: "boolean"},
"VERBOSE": {Type: "boolean"},
"OPTIONS": {Type: "string"},

},

Prologue: "module load python3",

Resources: {

UNICORE/X Manual 67

Nodes: 1,
}

}

9.3.1 Basic Application definition

Here is an example entry for the "Date" application on a UNIX system

{
Name: Date,
Version: 1.0,
Executable: "/bin/date",

}

Invoking the "Date" application will be simply mapped to an invocation of "/bin/date".

9.3.2 Arguments

Command line arguments are specified using <Argument> tags:

{
Name: LS,
Version: 1.0,
Executable: /bin/ls
Arguments: ["-l", "-t",],

}

This would result in a command line "/bin/ls -l -t".

9.3.3 Conditional Arguments

The job submission from a client usually contains environment variables to be set when run-
ning the application. It often happens that a certain argument should only be included if a
corresponding environment variable is set. This can be achieved by using "conditional argu-
ments" in the incarnation definition. Conditional arguments are indicated by a quastion mark
"?" appended to the argument value:

{
Name: JAVA,
Version: "11.0",
Description: "Java virtual machine",
Executable: "/usr/bin/java",

Arguments: ["-cp$CLASSPATH?",],

}

UNICORE/X Manual 68

Here, -cp$CLASSPATH? is an optional argument.

If the user’s job submission now includes a environment variable named CLASSPATH the incar-
nated commandline will be "/usr/bin/java -cp$CLASSPATH . . . ", otherwise just "/usr/bin/java
. . . ".

This allows very flexible incarnations.

9.3.4 Environment variables

To set environment variables, add a map

{
Name: LS,
Version: 1.0,
Executable: "/bin/ls",

Environment: {
"PATH": "/opt/myapp:/usr/bin:$PATH",
"MYENV": "value",

},

}

9.3.5 Pre and post-commands

Sometimes it is useful to be able to execute one or several commands before or after the exe-
cution of an application, for example, to perform some pre- or postprocessing. These pre/post
commands are executed on a login node (i.e. they are not part of the batch job).

{
Name: SomeSimulation,
Version: "1.0",
Executable: "/usr/bin/simulation",

PreCommand: "/opt/licenses/aquire_license",

PostCommand: "/opt/licenses/release_license",

}

9.3.6 Prologue and epilogue

These commands will be executed as part on a batch node of the user’s job script, and are placed
before / after the application executable command.

UNICORE/X Manual 69

{
Name: SomeSimulation,
Version: "1.0",
Executable: "/usr/bin/simulation",

Prologue: "module load some_module"

Epilogie: "",

}

9.3.7 Interactive execution when using a batch system

If an application should not be submitted to the batch system, but be run on the login node (i.e.
interactively), a flag in the IDB can be set:

{
Name: SomeApp,
Version: 1.0,

instruct UNICORE to run the application on a login node

RunOnLoginNode: true,

}

9.3.8 Exit code handing

By default, a UNICORE job will be set to NOT_SUCCESSFUL if the application exits with a
non-zero exit code. If you want to change this behaviour, you can set a flog

{
Name: SomeApp,
Version: 1.0,

instruct UNICORE to NOT fail if the application
exits with non-zero exit code

IgnoreNonZeroExitCode: true,

}

UNICORE/X Manual 70

9.4 Application argument metadata

For client components it can be useful to have a description of an application in terms of its
arguments. This allows for example the UNICORE Portal to automatically build a nice GUI for
the application.

{
Name: SomeApp,
Version: 1.0,

Parameters: {

SOURCE:{
Type: filename,
Description: "The input file",

},

VERBOSE:{
Type: boolean,
Description: "Verbose mode",

},

PRECISION:{
Type: choice,
Description: "Computational precision",
ValidValues: [

"sloppy", "normal", "pedantic",
],

},

},

}

The meaning of the attributes should be fairly obvious.

• the Description attribute contains a human-readable description of the argument

• the Type attribute can have the values (lower/upper case does not matter) "string", "boolean",
"int", "double", "filename" or "choice". In the case of "choice", the ValidValues attribute
is used to specify the list of valid values. The type filename is used to specify that this is
an input file for the application, allowing clients to enable special actions for this.

• The ValidValues attribute is used to limit the range of valid values, depending on the
Type of the argument. The processing of this attribute is client-dependent. The UNICORE
Rich Client supports intervals for the numeric types, and Java regular expressions for the
string types.

UNICORE/X Manual 71

9.4.1 Per-application resource requirements

If the application requires any default resources, like particular node constraints, or a specific
queue, you can add resource requests in the IDB.

For example:

{
Name: SomeSimulation,
Version: "3.0",

Resources: {
Nodes: "2",
NodeConstraints: "amd",
}

}

Note that the user job can override these, i.e. if the user requests different values for the re-
quested resources, the values from the user job will be used.

9.5 Tweaking the incarnation process

In UNICORE the term incarnation refers to the process of changing the abstract and probably
universal grid request into a sequence of operations local to the target system. The most fun-
damental part of this process is creation of the execution script which is invoked on the target
system (usually via a batch queuing subsystem (BSS)) along with an execution context which
includes local user id, group, BSS specific resource limits.

UNICORE provides a flexible incarnation model - most of the magic is done automatically by
TSI scripts basing on configuration which is read from the IDB. IDB covers script creation
(using templates, abstract application names etc). Mapping of the grid user to the local user is
done by using UNICORE Attribute Sources like the XUUDB.

In rare cases the standard UNICORE incarnation mechanism is not flexible enough. Typically
this happens when the script which is sent to TSI should be tweaked in accordance to some
runtime constraints. Few examples may include:

• Administrator wants to set memory requirements for all invocations of the application X
to 500MB if user requested lower amount of memory (as the administrator knows that the
application consumes always at least this amount of memory).

• Administrator wants to perform custom logging of suspected requests (which for instance
exceed certain resource requirements threshold)

• Administrator need to invoke a script that create a local user’s account if it doesn’t exist.

• Administrator wants to reroute some requests to a specific BSS queue basing on the arbitrary
contents of the request.

UNICORE/X Manual 72

• Administrator wants to set certain flags in the script which is sent to TSI when a request came
from the member of a specific VO. Later those flags are consumed by TSI and are used as
submission parameters.

Those and all similar actions can be performed with the Incarnation tweaking subsystem. Note
that though it is an extremely powerful mechanism, it is also a very complicated one and con-
figuring it is error prone. Therefore always try to use the standard UNICORE features (like
configuration of IDB and attribute sources) in the first place. Treat this incarnation tweaking
subsystem as the last resort!

To properly configure this mechanism at least a very basic Java programming language familiar-
ity is required. Also remember that in case of any problems contacting the UNICORE support
mailing list can be the solution.

9.5.1 Operation

It is possible to influence incarnation in two ways:

• BEFORE-SCRIPT it is possible to change all UNICORE variables which are used to produce
the final TSI script just before it is created and

• AFTER-SCRIPT later on to change the whole TSI script.

The first BEFORE-SCRIPT option is suggested: it is much easier as you have to modify some
properties only. In the latter much more error prone version you can produce an entirely new
script or just change few lines of the script which was created automatically. It is also possible
to use both solutions simultaneously.

Both approaches are configured in a very similar way by defining rules. Each rule has its
condition which triggers it and list of actions which are invoked if the condition was evaluated
to true. The condition is in both cases expressed in the same way. The difference is in case
of actions. Actions for BEFORE-SCRIPT rules can modify the incarnation variables but do
not return a value. Actions for AFTER-SCRIPT read as its input the original TSI script and
must write out the updated version. Theoretically AFTER-SCRIPT actions can also modify the
incarnation variables but this doesn’t make sense as those variables won’t be used.

9.5.2 Basic configuration

By default the subsystem is turned off. To enable it you must perform two simple things:

• Add the XNJS.incarnationTweakerConfig property to the XNJS config file. The
value of the property must provide a location of the file with dynamic incarnation rules.

• Add some rules to the file configured above.

The following example shows how to set the configuration file to the value conf/incarnationTweaker.xml:

UNICORE/X Manual 73

...
<eng:Properties>

...
<eng:Property name="XNJS.incarnationTweakerConfig" value="conf/ ←↩

incarnationTweaker.xml"/>
...

</eng:Properties>
...

The contents of the rules configuration file must be created following this syntax:

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<!-- Here come BEFORE-SCRIPT rules-->

</tns:beforeScript>

<tns:afterScript>
<!-- And here AFTER-SCRIPT rules-->

</tns:afterScript>
</tns:incarnationTweaker>

9.5.3 Creating rules

Each rule must conform to the following syntax:

<tns:rule finishOnHit="false">
<tns:condition> <!-- Here comes the rule’s ←↩

condition --> </tns:condition>

<tns:action type="ACTION-TYPE">ACTION-DEFINITION</ ←↩
tns:action>

<!-- More actions may follow -->
</tns:rule>

The rule’s attribute finishOnHit is optional, by default its value is false. When it is present
and set to true then this rule becomes the last rule invoked if it’s condition was met.

You can use as many actions as you want (assuming that at least one is present), actions are
invoked in the order of appearance.

SpEL and Groovy

Rule conditions are always boolean expressions of the Spring Expression Language (SpEL). As
SpEL can be also used in some types of actions it is the most fundamental tool to understand.

UNICORE/X Manual 74

Full documentation is available here: http://static.springsource.org/spring/docs/3.0.0.M3/spring-
framework-reference/html/ch07.html

The most useful is the section 7.5: http://static.springsource.org/spring/docs/3.0.0.M3/spring-
framework-reference/html/ch07s05.html

Actions can be also coded using the Groovy language. You can find Groovy documentation at
Groovy’s web page: http://groovy.codehaus.org

Creating conditions

Rule conditions are always Spring Expression Language (SpEL) boolean expressions. To create
SpEL expressions, the access to the request-related variables must be provided. All variables
which are available for conditions are explained in Section 9.6.

Creating BEFORE-SCRIPT actions

There are the following action types which you can use:

• spel (the default which is used when type parameter is not specified) treats action value
as SpEL expression which is simply evaluated. This is useful for simple actions that should
modify value of one variable.

• script treats action value as a SpEL expression which is evaluated and which should return
a string. Evaluation is done using SpEL templating feature with \${ and } used as variable
delimiters (see section 7.5.13 in Spring documentation for details). The returned string is
used as a command line which is invoked. This action is extremely useful if you want to run
an external program with some arguments which are determined at runtime. Note that if you
want to cite some values that may contain spaces (to treat them as a single program argument)
you can put them between double quotes ". Also escaping characters with "\" works.

• groovy treats action value as a Groovy script. The script is simply invoked and can manip-
ulate the variables.

• groovy-file works similarly to the groovy action but the Groovy script is read from the
file given as the action value.

All actions have access to the same variables as conditions; see Section 9.6 for details.

Creating AFTER-SCRIPT actions

There are the following action types which you can use:

• script (the default which is used when type parameter is not specified) treats action value
as SpEL expression which is evaluated and which should return a string. Evaluation is done
using SpEL templating feature with \${ and } used as variable delimiters (see section 7.5.13

http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07s05.html
http://static.springsource.org/spring/docs/3.0.0.M3/spring-framework-reference/html/ch07s05.html
http://groovy.codehaus.org

UNICORE/X Manual 75

in Spring documentation for details). The returned string used as a command line which is
invoked. The invoked application gets as its standard input the automatically created TSI
script and is supposed to return (using standard output) the updated script which shall be used
instead. This action is extremely useful if you want to run an external program with some
arguments which are determined at runtime. Note that if you want to cite some values that
may contain spaces (to treat them as a single program argument) you can put them between
double quotes ". Also escaping characters with \ works.

• groovy treats action value as a Groovy script. The script has access to one special variable
input of type Reader. The original TSI script is available from this reader. The groovy
script is expected to print the updated TSI script which shall be used instead of the original
one.

• groovy-file works the same as the groovy action but the Groovy script is read from the
file given as the action value.

All actions have access to the same variables as conditions; see Section 9.5 for details.

9.5.4 Final notes

• The rules configuration file is automatically reread at runtime.

• If errors are detected in the rules configuration file upon server startup then the whole subsys-
tem is disabled. If errors are detected at runtime after an update then old version of rules is
continued to be used. Always check the log file!

• When rules are read the system tries to perform a dry run using an absolutely minimal exe-
cution context. This can detect some problems in your rules but mostly only in conditions.
Actions connected to conditions which are not met won’t be invoked. Always try to submit a
real request to trigger your new rules!

• Be careful when writing conditions: it is possible to change incarnation variables inside your
condition - such changes also influence incarnation.

• It is possible (from the version 6.4.2 up) to stop the job processing from the rule’s action. To
do so with the grovy or grovy-file action, throw the de.fzj.unicore.xnjs.ems.ExecutionException
object from the script. In case of the script action, the script must exit with the exit sta-
tus equal to 10. The first 1024 bytes of its standard error are used as the message which is
included in the ExecutionException. This feature works both for the BEFORE- and AFTER-
SCRIPT actions. It is not possible to achieve this with the spel action type.

9.5.5 Complete examples and hints

Invoking a logging script for users who have the specialOne role. Note that the script is
invoked with two arguments (role name and client’s DN). As the latter argument may contain
spaces we surround it with quotation marks.

UNICORE/X Manual 76

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<tns:rule>

<tns:condition>client.role.name == "specialOne"</tns: ←↩
condition>

<tns:action type="script">/opt/scripts/logSpecials.sh $ ←↩
{client.role.name} "${client.distinguishedName}"</ ←↩
tns:action>

</tns:rule>
</tns:beforeScript>

<tns:afterScript>
</tns:afterScript>

</tns:incarnationTweaker>

A more complex example. Let’s implement the following rules:

• The Application with a IDB name HEAVY-APP will always get 500MB of memory require-
ment if user requested less or nothing.

• All invocations of an executable /usr/bin/serial-app are made serial, i.e. the number of re-
quested nodes and CPUs are set to 1.

• For all requests a special script is called which can create a local account if needed along with
appropriate groups.

• There is also one AFTER-RULE. It invokes a groovy script which adds an additional line to
the TSI script just after the first line. The line is added for all invocations of the /usr/bin/serial-
app program.

The realization of the above logic can be written as follows:

<?xml version="1.0" encoding="UTF-8"?>
<tns:incarnationTweaker xmlns:tns="http://eu.unicore/xnjs/ ←↩

incarnationTweaker"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<tns:beforeScript>
<tns:rule>

<tns:condition>app.applicationName == " ←↩
HEAVY-APP" and (resources. ←↩
individualPhysicalMemory == null

or resources. ←↩
individualPhysicalMemory ←↩
< 500000000)</tns ←↩

:condition>

UNICORE/X Manual 77

<tns:action>resources. ←↩
individualPhysicalMemory=500000000</tns ←↩
:action>

</tns:rule>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app" and resources. ←↩
individualCPUCount != null</tns: ←↩
condition>

<tns:action>resources.individualCPUCount ←↩
=1</tns:action>

<tns:action>resources.totalResourceCount ←↩
=1</tns:action>

</tns:rule>
<tns:rule>

<tns:condition>true</tns:condition>
<tns:action type="script">/opt/ ←↩

addUserIfNotExists.sh ${client.xlogin. ←↩
userName} ${client.xlogin.encodedGroups ←↩
}</tns:action>

</tns:rule>
</tns:beforeScript>

<tns:afterScript>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app"</tns:condition>

<tns:action type="groovy">
int i=0;
input.eachLine() { line ->
if(i==1) {

println("#TSI_MYFLAG=SERIAL");
println(line);

} else
println(line);

i++;
}

</tns:action>
</tns:rule>

</tns:afterScript>
</tns:incarnationTweaker>

Remember that some characters are special in XML (e.g. < and &). You have to encode them
with XML entities (e.g. as < and > respectively) or put the whole text in a CDATA
section. A CDATA section starts with "<![CDATA[" and ends with "]]>". Example:

<tns:condition><!CDATA[resources.individualPhysicalMemory < ←↩
500000000]]></tns:condition>

UNICORE/X Manual 78

Note that usually it is better to put Groovy scripts in a separate file. Assuming that you placed
the contents of the groovy AFTER-action above in a file called /opt/scripts/filter1.g then the
following AFTER-SCRIPT section is equivalent to the above one:

<tns:afterScript>
<tns:rule>

<tns:condition>app.executable == "/usr/bin/ ←↩
serial-app"</tns:condition>

<tns:action type="groovy-file">/opt/scripts ←↩
/filter1.g</tns:action>

</tns:rule>
</tns:afterScript>

It is possible to fail the job when a site-specific condition is met. E.g. with the groovy script:

<tns:afterScript>
<tns:rule>

<tns:condition>SOME - CONDITION</tns: ←↩
condition>

<tns:action type="groovy">
throw new de.fzj.unicore.xnjs.ems.ExecutionException(de.fzj.unicore ←↩

.xnjs.util.ErrorCode.ERR_EXECUTABLE_FORBIDDEN, "Description for ←↩
the user");

</tns:action>
</tns:rule>

</tns:afterScript>

To check your rules when you develop them, it might be wise to enable DEBUG logging on in-
carnation tweaker facility. To do so add the following setting to the logging.properties
file:

log4j.logger.unicore.xnjs.IncarnationTweaker=DEBUG

You may also want to see how the final TSI script looks like. Most often TSI places it in a file
in job’s directory. However if the TSI you use doesn’t do so (e.g. in case of the NOBATCH
TSI) you can trigger logging of the TSI script on the XNJS side. There are two ways to do it.
You can enable DEBUG logging on the unicore.xnjs.tsi.TSIConnection facility:

log4j.logger.unicore.xnjs.tsi.TSIConnection=DEBUG

This solution is easy but it will produce also much more of additional information in you log
file. If you want to log TSI scripts only, you can use AFTER-SCRIPT rule as follows:

<tns:afterScript>
<tns:rule>

<tns:condition>true</tns:condition>
<tns:action type="groovy">

org.apache.log4j.Logger log=org.apache.log4j.Logger.getLogger(" ←↩
unicore.xnjs.RequestLogging");

UNICORE/X Manual 79

log.info("Dumping TSI request:");
input.eachLine() { line ->

println(line);
log.info(" " + line);

}
</tns:action>

</tns:rule>
</tns:afterScript>

The above rule logs all requests to the normal UNICORE/X log file with the INFO level.

9.6 Incarnation tweaking context

Dynamic incarnation tweaker conditions and also all actions are provided with access to all
relevant data structures which are available at XNJS during incarnation.

The following variables are present:

• Client client provides access to authorization material: xlogin, roles, attributes etc.
NOTE: In general it makes sense to modify only the xlogin field in the Client object, the rest
are available only for information purposes. E.g. there is a queue field, but changing it in
the incarnation tweaker rules will have no effect on incarnation. Use the queue property
available from resources variable instead. You can read client’s queue to check what
queue settings were defined in attribute sources for the user. The source

• ApplicationInfo app provides access to information about application to be executed
(both abstract IDB name and actual target system executable). You can change the values here
to influence the incarnation. Remember that changing the user’s DN here won’t influence
authorization layer as authorization was already done for each request at this stage. The
source

• ResourcesWrapper resources provides access to resource requirements of the appli-
cation. The source

• ExecutionContext ec provides access to the application environment: interactive set-
ting, environment variables, working directory and stdin/out/err files. The source

• IncarnationDataBase idb provides an (read only) access to the contents of the IDB.
https://sourceforge.net/p/unicore/svn/HEAD/tree/xnjs/trunk/src/main/java/de/fzj/unicore/xnjs/-
idb/IDBImpl.java [The source]

Each of the available variables has many properties that you can access. It is best to check
source code of the class to get a complete list of them. You can read property X if it has a
corresponding Java public Type getX() method. You can set a property Y if it has a
corresponding Java public void setY(Type value) method.

https://sourceforge.net/p/unicore/securityLibrary/ci/master/tree/src/main/java/eu/unicore/security/Client.java
https://sourceforge.net/p/unicore/svn/HEAD/tree/xnjs/trunk/src/main/java/de/fzj/unicore/xnjs/idb/ApplicationInfo.java
https://sourceforge.net/p/unicore/svn/HEAD/tree/xnjs/trunk/src/main/java/de/fzj/unicore/xnjs/idb/ApplicationInfo.java
https://sourceforge.net/p/unicore/svn/HEAD/tree/xnjs/trunk/src/main/java/de/fzj/unicore/xnjs/incarnation/ResourcesWrapper.java
https://sourceforge.net/p/unicore/svn/HEAD/tree/xnjs/trunk/src/main/java/de/fzj/unicore/xnjs/ems/ExecutionContext.java?view=markup
https://sourceforge.net/p/unicore/svn/HEAD/tree/xnjs/trunk/src/main/java/de/fzj/unicore/xnjs/idb/IDBImpl.java
https://sourceforge.net/p/unicore/svn/HEAD/tree/xnjs/trunk/src/main/java/de/fzj/unicore/xnjs/idb/IDBImpl.java

UNICORE/X Manual 80

9.6.1 Simple example

Let’s consider the variable client. In the Client class you can find methods:

public String getDistinguishedName()

public void setDistinguishedName(String distinguishedName)

This means that the following SpEL condition is correct:

client.distinguishedName != null and client.distinguishedName == " ←↩
CN=Roger Zelazny,C=US"

Note that it is always a safe bet to check first if the value of a property is not null.

Moreover you can also set the value of the distinguished name in an action (this example is
correct for both SpEL and Groovy):

client.distinguishedName="CN=Roger Zelazny,C=US"

9.6.2 Advanced example

Often the interesting property is not available directly under one of the above enumerated vari-
ables. In case of the client variable one example may be the xlogin property holding the
list of available local accounts and groups and the ones which were selected among them.

Example of condition checking the local user id:

client.xlogin.userName != null and client.xlogin.userName == "roger ←↩
"

Setting can also be done in an analogous way. However always pay attention to the fact that not
always setting a value will succeed. E.g. for Xlogin it is possible to set a selected xlogin only
to one of those defined as available (see contents if the respective setSelectedLogin()
method). Therefore to change local login to a fixed value it is best to just override the whole
XLogin object like this (SpEL):

client.xlogin=new eu.unicore.security.Xlogin(new String[] {"roger ←↩
"}, new String{"users"})

9.6.3 Resources variable

As it is bit difficult to manipulate the resources requirements object which is natively used by
UNICORE, it is wrapped to provide an easier to use interface. The only exposed properties are
those requirements which are actually used by UNICORE when the TSI script is created.

You can access the low level (and complicated) original resources object through the resources.allResources
property.

UNICORE/X Manual 81

10 Data staging

When executing user jobs, the XNJS also performs data staging, i.e. getting data from remote
locations before starting the job, and uploading data when the job has finished. A variety of
protocols can be used for data movement, including UNICORE-specific protocols such as BFT
or UFTP, but also standard protocols like ftp, scp, and e-mail.

Some of these (like mail) have additional configuration options, which are given in this section.

10.1 SCP support

UNICORE supports file staging in/out using SCP, as defined in the Open Grid Forum’s "HPC
File staging profile" (GFD.135).

In the JSDL job description, an scp stage in is specified as follows:

<?xml version="1.0"?>
<p:JobDefinition xmlns:p="http://schemas.ggf.org/jsdl/2005/11/jsdl"

xmlns:jsdl-posix="http://schemas.ggf.org/jsdl ←↩
/2005/11/jsdl-posix">

<p:JobDescription>
<p:Application>
<jsdl-posix:POSIXApplication>
<jsdl-posix:Executable>/bin/ls</jsdl-posix:Executable>
<jsdl-posix:Argument>-l</jsdl-posix:Argument>

</jsdl-posix:POSIXApplication>
</p:Application>
<p:DataStaging>
<p:FileName>input</p:FileName>
<p:CreationFlag>overwrite</p:CreationFlag>
<p:Source>
<p:URI>scp://HOST:PORT:filepath</p:URI>

</p:Source>
<ac:Credential xmlns:ac="http://schemas.ogf.org/hpcp/2007/11/ ←↩

ac">
<wsse:UsernameToken xmlns:wsse="http://docs.oasis-open.org/ ←↩

wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd ←↩
">

<wsse:Username>***</wsse:Username>
<wsse:Password>***</wsse:Password>

</wsse:UsernameToken>
</ac:Credential>

</p:DataStaging>
</p:JobDescription>

</p:JobDefinition>

As you can see, username and password required to invoke SCP are embedded into the job
description, and the URL schema is "scp://"

UNICORE/X Manual 82

10.1.1 Site setup

At a site that wishes to support SCP, the UNICORE server needs to be configured with the path
of an scp wrapper script that can pass the password to scp, if necessary.

If not already pre-configured during installation, you can configure this path manually in the
XNJS config file

scp wrapper script
XNJS.staging.scpWrapper=/path/to/scp-wrapper.sh

10.1.2 SCP wrapper script

A possible scp wrapper script written in TCL is provided in the "extras" folder of the core server
bundle, for your convenience it is reproduced here. It requires TCL and Expect. You may need
to modify the first line depending on how Expect is installed on your system.

#!/usr/bin/expect -f

this is a wrapper around scp
#
it automates the interaction required to enter the password.
#
Prerequisites:
The TCL Expect tool is used.
#
Arguments:
1: source, 2: target, 3: password

set source [lindex $argv 0]
set target [lindex $argv 1]
set password [lindex $argv 2]
set timeout 10

start the scp process
spawn scp "$source" "$target"

handle the interaction
expect {

"passphrase" {
send "$password\r"
exp_continue

} "password:" {
send "$password\r"
exp_continue

} "yes/no)?" {
send "yes\r"
exp_continue

} timeout {

UNICORE/X Manual 83

puts "Timeout."
exit

} -re "." {
exp_continue

} eof {
exit

}
}

Similar scripts may also be written in other scripting languages such as Python.

10.2 Mail support

UNICORE supports file staging out using email. An existing SMPT server or some other work-
ing email mechanism is required for this to work.

In the JSDL job description, a stage out using email is specified as follows:

<?xml version="1.0"?>
<p:JobDefinition xmlns:p="http://schemas.ggf.org/jsdl/2005/11/jsdl"

xmlns:jsdl-posix="http://schemas.ggf.org/jsdl ←↩
/2005/11/jsdl-posix">

<p:JobDescription>

<!-- example stage-out using email -->
<p:DataStaging>
<p:FileName>stdout</p:FileName>
<p:Target>
<p:URI>mailto:user@domain?subject=Your output is ready</p: ←↩

URI>
</p:Target>

</p:DataStaging>

</p:JobDescription>
</p:JobDefinition>

The "mailto" URI consists of the email address and an OPTIONAL user-defined subject.

10.2.1 Site setup

Without any configuration, UNICORE will use JavaMail and attempt to use an SMTP server
running on the UNICORE/X host, expected to be listening on port 25 (the default SMTP port).

To change this behaviour, the following properties can be defined (in the XNJS config file). See
the next section if you do not want to use an SMTP server directly.

• XNJS.staging.mailHost: the host of the SMTP server

UNICORE/X Manual 84

• XNJS.staging.mailPort : the port of the SMTP server

• XNJS.staging.mailUser : the user name of the mail account which sends email

• XNJS.staging.mailPassword : the password of the mail account which sends email

• XNJS.staging.mailSSL : to use SSL, see the XNJS/TSI SSL setup page on how to setup SSL

10.2.2 Email wrapper script

As an alternative to using JavaMail, the site admin can define a script which is executed (as the
current UNICORE user) to send email.

mailto wrapper script, defining this will disable JavaMail
XNJS.staging.mailSendScrip=/path/to/mail-wrapper.sh

This is expected to takes three parameters: email address, file to send and a subject. An example
invocation is

mail-wrapper.sh "user@somehost.eu" "outfile" "Result file from your ←↩
job"

10.3 GridFTP

Using GridFTP requires a proxy cert, please refer to section [?]

10.4 Configuration reference

The configuration settings related to data staging are summarized in the following table.

Property name Type Default
value /
mandatory

Description

XNJS.staging.curl string - Location of the curl
executable used for FTP
stage-ins. If null, Java code
will be used for HTTP.

XNJS.staging.filesystemGraceTimeinteger >= 1 10 Grace time (in seconds)
when waiting for files to
appear on shared
filesystems.

XNJS.staging.gridftpstring globus-url-copyLocation of the
globus-url-copy executable
used for GridFTP staging.

UNICORE/X Manual 85

Property name Type Default
value /
mandatory

Description

XNJS.staging.gridftpParametersstring empty
string

Additional options for
globus-url-copy.

XNJS.staging.mailEnableSSL[true, false] false Outgoing mail (SMTP):
enable SSL connection.

XNJS.staging.mailHoststring localhost Outgoing mail host (SMTP)
used for staging-out via
email.

XNJS.staging.mailPasswordstring - Outgoing mail (SMTP)
password.

XNJS.staging.mailPortinteger number 25 Outgoing mail (SMTP) port
number.

XNJS.staging.mailSendScriptstring - Script to be used for
sending outgoing mail
(instead of using SMTP).

XNJS.staging.mailUserstring - Outgoing mail (SMTP) user
name.

XNJS.staging.scpWrapperstring scp-wrapper.shLocation of the wrapper
script used for scp staging.

XNJS.staging.threadsinteger >= 1 4 Number of worker threads
to use for data staging.

XNJS.staging.wget string - Location of the wget
executable used for HTTP
stage-ins. If null, Java code
will be used for HTTP.

XNJS.staging.wgetParametersstring - Additional options for wget.

11 UFTP setup

UFTP is a high-performance file transfer protocol. For using UFTP as a data staging and file
upload/download solution in UNICORE, a separate server (uftpd) is required. This is installed
on a host with direct access to the file system, usually this is a cluster login node, but it can also
be a separate host.

In a UFTP transfer, one side acts as a client and the other side is the uftpd server. UNICORE/X
will run the client code via the TSI (recommended) or in-process (with lower performance)

For details on how to install the uftpd server please refer to the separate UFTPD manual avail-
able on unicore.eu, which provides all information required to install and configure the UFTPD.

Note
If UFTPD is not running on the same host(s) as the TSI, you will need to copy the UTFPD libs
and client executable to the TSI machine(s).

UNICORE/X Manual 86

The minimal required UNICORE/X configuration consists of the listen and command addresses
of the UFTPD server and the location of the client executable on the TSI host.

Listener (pseudo-FTP) socket of UFTPD
coreServices.uftp.server.host=uftp.yoursite.edu
coreServices.uftp.server.port=64434

Command socket of UFTPD
coreServices.uftp.command.host=uftp.yoursite.edu
coreServices.uftp.command.port=64435

Full path to the ’uftp.sh’ client executable
installed on the TSI node
coreServices.uftp.client.executable=/usr/share/unicore/uftpd/bin/ ←↩

uftp.sh

If you want to run the client code in the UNICORE/X process, set

coreServices.uftp.client.local=true

The following table shows all the available configuration options for UFTP.

Property name Type Default
value /
mandatory

Description

coreServices.uftp.buffersizeinteger >= 1 128 File read/write buffer size
in kbytes.

coreServices.uftp.client.executablestring uftp.sh Configures the path to the
client executable (location
of uftp.sh).

coreServices.uftp.client.hoststring not set Client host. If not set and
UFTP client is set to local,
then the local interface
address will be determined
at runtime. If not set and
non-local mode is
configured, then the TSI
machine will be used.

coreServices.uftp.client.ip_addressesstring not set Client IP address(es) to
send to UFTPD. If not set,
the client.host value will be
used.

UNICORE/X Manual 87

Property name Type Default
value /
mandatory

Description

coreServices.uftp.client.local[true, false] false Controls whether, the Java
UFTP client code should be
run directly within the
JVM, which will work only
if the UNICORE/X has
access to the target file
system, or, if set to false, in
the TSI.

coreServices.uftp.command.hoststring localhost The UFTPD command
host.

coreServices.uftp.command.portinteger [1 —
65535]

64435 The UFTPD command port.

coreServices.uftp.command.socketTimeoutinteger [0 —
300]

10 The timeout (in seconds)
for communicating with the
command port.

coreServices.uftp.command.sslDisable[true, false] false Allows to disable SSL on
the command port (useful
for testing).

coreServices.uftp.disableSessionMode[true, false] false Controls multi-file transfers
should be done one by one
(NOT recommended).

coreServices.uftp.enable[true, false] true Controls whether UFTP
should be enabled for this
server.

coreServices.uftp.encryption[true, false] false Controls whether
encryption should be
enabled by default for
server-server transfers.

coreServices.uftp.rateLimitinteger number 0 Limit the bandwidth (bytes
per second) used by a single
transfer (0 means no limit).

coreServices.uftp.server.hoststring - UFTPD listen host. If this
is not set, UFTP is disabled.

coreServices.uftp.server.portinteger [1 —
65535]

64434 UFTPD listen port.

coreServices.uftp.streamsinteger number 1 Requested number of
parallel data streams.

coreServices.uftp.streamsLimitinteger >= 1 4 Server limit for number of
streams (per client
connection).

UNICORE/X Manual 88

12 Configuration of storages

A UNICORE/X server can make storage systems (e.g. file systems) accessible to users in
several ways.

• storages endpoints can be defined which are available even if there is no compute service;

• storages can be "attached" to compute services;

• each job has a working directory, which is exposed as a storage instance and can be freely
accessed using a UNICORE client.

• the "StorageFactory" service allows users to create dynamic storage instances, which is very
useful if the UNICORE workflow system is used;

Storages have additional features which are covered in other sections of this manual.

• Metadata management is covered in Section 13

• Data-triggered processing is described in Section 14

12.1 Configuring storage services

Storage services are created on server startup and published in the registry. They are indepen-
dent of any compute services and accessible for all users.

Note
Service accessibility does not imply file system accessibility. The file system access control
is still in place, so users must have the appropriate Unix permissions to access a storage.

The basic property controls which storages are enabled

coreServices.sms.storage.enabledStorages=HOME WORK SHARE2 ...

Each enabled storage is configured using a set of properties.

Property name Type Default
value /
mandatory

Description

coreServices.sms.storage.N.allowUserDefinedPath[true, false] true Whether the allow the user
to set the storage base
directory when creating the
storage via the
StorageFactory.

UNICORE/X Manual 89

Property name Type Default
value /
mandatory

Description

coreServices.sms.storage.N.checkExistence[true, false] true Whether the existence of
the base directory should be
checked when creating the
storage.

coreServices.sms.storage.N.classClass extending
de.fzj.unicore.uas.StorageManagement

- Storage implementation
class used (and mandatory)
in case of the CUSTOM
type.

coreServices.sms.storage.N.cleanup[true, false] false Whether files of the storage
should be removed when
the storage is destroyed.
This is mostly useful for
storage factories. (runtime
updateable)

coreServices.sms.storage.N.defaultUmaskinteger number 77 Default (initial) umask for
files in the storage. Must be
an octal number. Note that
this property is not
updateable at runtime for
normal storages as it
wouldn’t have sense (it is
the initial umask by
definition). However in
case of storage factory it is,
i.e. after the property
change, the SMSes created
by the factory will use the
new umask as the initial
one. At runtime the SMS
umask can be changed by
the clients (if are authorized
to do so).

coreServices.sms.storage.N.descriptionstring FilesystemDescription of the storage.
It will be presented to the
users. (runtime updateable)

coreServices.sms.storage.N.disableMetadata[true, false] false Whether the metadata
service should be disabled
for this storage.

coreServices.sms.storage.N.enableTrigger[true, false] false Whether the triggering
feature should be enabled
for this storage.

UNICORE/X Manual 90

Property name Type Default
value /
mandatory

Description

coreServices.sms.storage.N.filterFiles[true, false] false If set to true then this SMS
will filter returned files in
response of the
ListDirectory command:
only files owned or
accessible by the caller will
be returned. (runtime
updateable)

coreServices.sms.storage.N.infoProviderClassClass extending
de.fzj.unicore.uas.impl.sms.StorageInfoProvider

de.fzj.unicore.uas.impl.sms.DefaultStorageInfoProvider(Very) advanced setting,
providing information
about storages produced by
the SMS factory.

coreServices.sms.storage.N.namestring - Storage name. If not set
then the internal unique
identifier is used.

coreServices.sms.storage.N.pathstring - Denotes the storage base
path.

coreServices.sms.storage.N.protocolsstring - (DEPRECATED, ignored)
(runtime updateable)

coreServices.sms.storage.N.settings.[.*]string can have
subkeys

- Useful for CUSTOM
storage types: allows to set
additional settings (if
needed) by such storages.
Please refer to
documentation of a
particular custom storage
type for details. Note that
while in general updates of
the properties at runtime
are propagated to the
chosen implementation, it
is up to it to use the updated
values or ignore changes.
(runtime updateable)

coreServices.sms.storage.N.triggerUserIDstring - For data triggering on
shared storages, use this
user ID for the controlling
process.

UNICORE/X Manual 91

Property name Type Default
value /
mandatory

Description

coreServices.sms.storage.N.typestring - Storage type. FIXEDPATH:
mapped to a fixed directory,
VARIABLE: resolved using
an environmental variable
lookup, CUSTOM:
specified class is used.

coreServices.sms.storage.N.workdirstring - (DEPRECATED, use path
instead)

For example to define a storage for accessing the user’s HOME and some shared path

coreServices.sms.storage.HOME.name=HOME
coreServices.sms.storage.HOME.type=HOME
coreServices.sms.storage.HOME.description=User’s HOME

coreServices.sms.storage.WORK.name=WORK
coreServices.sms.storage.WORK.description=Shared projects workspace
coreServices.sms.storage.WORK.path=/mnt/gpfs/projects
coreServices.sms.storage.WORK.defaultUmask=07

The name parameter will be used as the storage’s service ID. This means that the URL to access
these storages will be something like

https://<site_address>/rest/core/storages/HOME

https://<site_address>/rest/core/storages/WORK

and via the SOAP/XML interfaces

https://<site_address>/services/StorageManagement?res=HOME

https://<site_address>/services/StorageManagement?res=WORK

Usually, the "name" property is not needed, if you set it it should match the ID to avoid confu-
sion.

The other storage properties (see the previous section) are also accepted!

12.2 Configuring storages attached to TargetSystem instances

Each TargetSystem instance can have one or more storages attached to it. Note that this is
different case from the shared storages which are not attached to any particular TargetSystem.
The practical difference is that to use storages attached to a TargetSystem, a user must first
create one.

UNICORE/X Manual 92

By default, NO storages are created.

For example, to allows users access their home directory on the target system, you need to add
a storage. This is done using configuration entries in uas.config.

Property name Type Default
value /
mandatory

Description

coreServices.targetsystem.storage.N.allowUserDefinedPath[true, false] true Whether the allow the user
to set the storage base
directory when creating the
storage via the
StorageFactory.

coreServices.targetsystem.storage.N.checkExistence[true, false] true Whether the existence of
the base directory should be
checked when creating the
storage.

coreServices.targetsystem.storage.N.classClass extending
de.fzj.unicore.uas.StorageManagement

- Storage implementation
class used (and mandatory)
in case of the CUSTOM
type.

coreServices.targetsystem.storage.N.cleanup[true, false] false Whether files of the storage
should be removed when
the storage is destroyed.
This is mostly useful for
storage factories. (runtime
updateable)

coreServices.targetsystem.storage.N.defaultUmaskinteger number 77 Default (initial) umask for
files in the storage. Must be
an octal number. Note that
this property is not
updateable at runtime for
normal storages as it
wouldn’t have sense (it is
the initial umask by
definition). However in
case of storage factory it is,
i.e. after the property
change, the SMSes created
by the factory will use the
new umask as the initial
one. At runtime the SMS
umask can be changed by
the clients (if are authorized
to do so).

UNICORE/X Manual 93

Property name Type Default
value /
mandatory

Description

coreServices.targetsystem.storage.N.descriptionstring FilesystemDescription of the storage.
It will be presented to the
users. (runtime updateable)

coreServices.targetsystem.storage.N.disableMetadata[true, false] false Whether the metadata
service should be disabled
for this storage.

coreServices.targetsystem.storage.N.enableTrigger[true, false] false Whether the triggering
feature should be enabled
for this storage.

coreServices.targetsystem.storage.N.filterFiles[true, false] false If set to true then this SMS
will filter returned files in
response of the
ListDirectory command:
only files owned or
accessible by the caller will
be returned. (runtime
updateable)

coreServices.targetsystem.storage.N.infoProviderClassClass extending
de.fzj.unicore.uas.impl.sms.StorageInfoProvider

de.fzj.unicore.uas.impl.sms.DefaultStorageInfoProvider(Very) advanced setting,
providing information
about storages produced by
the SMS factory.

coreServices.targetsystem.storage.N.namestring - Storage name. If not set
then the internal unique
identifier is used.

coreServices.targetsystem.storage.N.pathstring - Denotes the storage base
path.

coreServices.targetsystem.storage.N.protocolsstring - (DEPRECATED, ignored)
(runtime updateable)

coreServices.targetsystem.storage.N.settings.[.*]string can have
subkeys

- Useful for CUSTOM
storage types: allows to set
additional settings (if
needed) by such storages.
Please refer to
documentation of a
particular custom storage
type for details. Note that
while in general updates of
the properties at runtime
are propagated to the
chosen implementation, it
is up to it to use the updated
values or ignore changes.
(runtime updateable)

UNICORE/X Manual 94

Property name Type Default
value /
mandatory

Description

coreServices.targetsystem.storage.N.triggerUserIDstring - For data triggering on
shared storages, use this
user ID for the controlling
process.

coreServices.targetsystem.storage.N.typestring - Storage type. FIXEDPATH:
mapped to a fixed directory,
VARIABLE: resolved using
an environmental variable
lookup, CUSTOM:
specified class is used.

coreServices.targetsystem.storage.N.workdirstring - (DEPRECATED, use path
instead)

Here, "N" stands for an identifier (e.g. 1,2, 3, . . .) to distinguish the storages. For example,
to configure three storages (Home, one named TEMP pointing to "/tmp" and the other named
DEISA_HOME pointing to "$DEISA_HOME") you would add the following configuration
entries in uas.config:

coreServices.targetsystem.storage.0.name=Home
coreServices.targetsystem.storage.0.type=HOME

coreServices.targetsystem.storage.1.name=TEMP
coreServices.targetsystem.storage.1.type=FIXEDPATH
coreServices.targetsystem.storage.1.path=/tmp

coreServices.targetsystem.storage.2.name=DEISA_HOME
coreServices.targetsystem.storage.2.type=VARIABLE
coreServices.targetsystem.storage.2.path=$DEISA_HOMES

example for a custom SMS implementation
coreServices.targetsystem.storage.3.name=MyStorage
coreServices.targetsystem.storage.3.type=CUSTOM
coreServices.targetsystem.storage.3.path=/
coreServices.targetsystem.storage.3.class=my.custom.sms. ←↩

ImplementationClass

12.2.1 Controlling target system’s storage resources

By default storage resource names (used in storage address) are formed from the owning user’s
xlogin and the storage type name, e.g. "someuser-Home". This is quite useful as users can
write a URL of the storage without prior searching for its address. However if the site’s user
mapping configuration maps more than one grid certificate to the same xlogin, then this solution
is not acceptable: only the first user connecting would be able to access her/his storage. This

UNICORE/X Manual 95

is because resource owners are expressed as grid user names (certificate DNs) and not xlogins.
To have unique, but dynamically created and non user friendly names of storages (and solve the
problem of non-unique DN mappings) set this option in uas.config:

coreServices.targetsystem.uniqueStorageIds=true

12.3 Configuring the StorageFactory service

The StorageFactory service allows clients to dynamically create storage instances. These can
have different types, for example you could have storages on a normal filesystem, and other
storages on an S3 cluster.

The basic property controls which storage types are supported

coreServices.sms.enabledFactories=TYPE1 TYPE2 ...

Each supported storage type is configured using a set of properties

Property name Type Default
value /
mandatory

Description

coreServices.sms.factory.N.allowUserDefinedPath[true, false] true Whether the allow the user
to set the storage base
directory when creating the
storage via the
StorageFactory.

coreServices.sms.factory.N.checkExistence[true, false] true Whether the existence of
the base directory should be
checked when creating the
storage.

coreServices.sms.factory.N.classClass extending
de.fzj.unicore.uas.StorageManagement

- Storage implementation
class used (and mandatory)
in case of the CUSTOM
type.

coreServices.sms.factory.N.cleanup[true, false] false Whether files of the storage
should be removed when
the storage is destroyed.
This is mostly useful for
storage factories. (runtime
updateable)

UNICORE/X Manual 96

Property name Type Default
value /
mandatory

Description

coreServices.sms.factory.N.defaultUmaskinteger number 77 Default (initial) umask for
files in the storage. Must be
an octal number. Note that
this property is not
updateable at runtime for
normal storages as it
wouldn’t have sense (it is
the initial umask by
definition). However in
case of storage factory it is,
i.e. after the property
change, the SMSes created
by the factory will use the
new umask as the initial
one. At runtime the SMS
umask can be changed by
the clients (if are authorized
to do so).

coreServices.sms.factory.N.descriptionstring FilesystemDescription of the storage.
It will be presented to the
users. (runtime updateable)

coreServices.sms.factory.N.disableMetadata[true, false] false Whether the metadata
service should be disabled
for this storage.

coreServices.sms.factory.N.enableTrigger[true, false] false Whether the triggering
feature should be enabled
for this storage.

coreServices.sms.factory.N.filterFiles[true, false] false If set to true then this SMS
will filter returned files in
response of the
ListDirectory command:
only files owned or
accessible by the caller will
be returned. (runtime
updateable)

coreServices.sms.factory.N.infoProviderClassClass extending
de.fzj.unicore.uas.impl.sms.StorageInfoProvider

de.fzj.unicore.uas.impl.sms.DefaultStorageInfoProvider(Very) advanced setting,
providing information
about storages produced by
the SMS factory.

coreServices.sms.factory.N.namestring - Storage name. If not set
then the internal unique
identifier is used.

UNICORE/X Manual 97

Property name Type Default
value /
mandatory

Description

coreServices.sms.factory.N.pathstring - Denotes the storage base
path.

coreServices.sms.factory.N.protocolsstring - (DEPRECATED, ignored)
(runtime updateable)

coreServices.sms.factory.N.settings.[.*]string can have
subkeys

- Useful for CUSTOM
storage types: allows to set
additional settings (if
needed) by such storages.
Please refer to
documentation of a
particular custom storage
type for details. Note that
while in general updates of
the properties at runtime
are propagated to the
chosen implementation, it
is up to it to use the updated
values or ignore changes.
(runtime updateable)

coreServices.sms.factory.N.triggerUserIDstring - For data triggering on
shared storages, use this
user ID for the controlling
process.

coreServices.sms.factory.N.typestring - Storage type. FIXEDPATH:
mapped to a fixed directory,
VARIABLE: resolved using
an environmental variable
lookup, CUSTOM:
specified class is used.

coreServices.sms.factory.N.workdirstring - (DEPRECATED, use path
instead)

For example

coreServices.sms.factory.TYPE1.description=GPFS file system
coreServices.sms.factory.TYPE1.fixedpath=GPFS file system
coreServices.sms.factory.TYPE1.path=/mnt/gpfs/unicore/unicorex-1/ ←↩

storage-factory

if this is set to true, the directory corresponding to a storage ←↩
instance will

be deleted when the instance is destroyed. Defaults to "true"
coreServices.sms.factory.TYPE1.cleanup=true

UNICORE/X Manual 98

allow the user to pass in a path on storage creation. Defaults to ←↩
"true"

coreServices.sms.factory.TYPE1.allowUserDefinedPath=true

The "path" parameter determines the base directory used for the storage instances (i.e. on the
backend), and the unique ID of the storage will be appended automatically.

The "cleanup" parameter controls whether the storage directory will be deleted when the storage
is destroyed.

It is also possible to let the user control the path of the dynamic storage, by sending a "path"
parameter when creating the storage. For example, the user can use UCC to create a storage:

$> ucc create-sms path=/opt/projects/shared-data

This will create a storage resource for accessing the given directory. In this case, there will be
no cleanup, and no appended storage ID.

The normal storage properties (see the previous section) are also accepted: "type", "class",
"filterFiles" etc.

If you have a custom storage type, an additional "class" parameter defines the Java class name
to use (as in normal SMS case). For example:

coreServices.sms.factory.TYPE1.type=CUSTOM
coreServices.sms.factory.TYPE1.class=de.fzj.unicore.uas.jclouds.s3. ←↩

S3StorageImpl

12.4 Configuring the job working directory storage services

For each UNICORE job instance, a storage instance is created, corresponding to the job’s work-
ing directory. In some cases you might wish to control this storage in detail, e.g. configure a
special storage backend.

The working directory storages are configured using a set of properties, which is the same as
for the other storage types, except for the prefix.

Note
The "path", "name", "description", "enableTrigger" and "disableMetadata" properties are ig-
nored, they are set by the server.

For example

coreServices.sms.jobDirectories.type=CUSTOM
coreServices.sms.jobDirectories.class=your.custom.SMSImpl

UNICORE/X Manual 99

13 The UNICORE metadata service

UNICORE supports metadata management on a per-storage basis. This means, each storage
instance (for example, the user’s home, or a job working directory) has its own metadata man-
agement service instance.

Metadata management is separated into two parts: a front end (which is a web service) and a
back end.

The front end service allows the user to manipulate and query metadata, as well as manually
trigger the metadata extraction process. The back end is the actual implementation of the meta-
data management, which is pluggable and can be exchanged by custom implementations. The
default implementation has the following properties

• Apache Lucene for indexing,

• Apache Tika for extracting metadata,

• metadata is stored as files directly on the storage resource, in files with a special ".metadata"
suffix

• the index files are stored on the UNICORE/X server, in a configurable directory

13.1 Configuring metadata support

By default, metadata support is enabled on all storages (except job directories).

You can disable it on a per-storage basis, see Section 12 for the relevant config settings.

You can also control which implementation should be used. This is done in <CONF>/uas.config.

#
Metadata manager settings
#

coreServices.metadata.managerClass=eu.unicore.uas.metadata. ←↩
LuceneMetadataManager

#
use Tika for extracting metadata
(if you do not want this, remove this property)
#
coreServices.metadata.parserClass=org.apache.tika.parser. ←↩

AutoDetectParser

#
Lucene index directory:
#
Configure a directory on the UNICORE/X machine where index

UNICORE/X Manual 100

files should be placed
#
coreServices.metadata.luceneDirectory=/tmp/data/luceneIndexFiles/

13.2 Controlling metadata extraction

If a file named .unicore_metadata_control is found in the base directory (i.e. where
the crawler starts its crawling process), it is evaluated to decide which files should be included
or excluded in the metadata extraction process.

By default, all files are included in the extraction process, except those matching a fixed set of
patterns (".svn", and the UNICORE metadata and control files themselves).

The file format is a standard "key=value" properties file. Currently, the following keys are
understood

• exclude a comma-separated list of string patterns of filenames to exclude

• include a comma-separated list of string patterns of filenames to include

• useDefaultExcludes if set to "false", the predefined exclude list will NOT be used

The include/exclude patterns may include wildcards ? and *.

Examples:

To only include pdf and jpg files, you would use

include=*.pdf,*.jpg

To exclude all doc and ppt files,

exclude=*.doc,*.ppt

To include all pdf files except those whose name starts with 2011,

include=*.pdf
exclude=2011*.pdf

14 Data-triggered processing

UNICORE can be set up to automatically scan storages and trigger processing steps (e.g. submit
batch jobs or run processing tasks) according to user-defined rules.

UNICORE/X Manual 101

14.1 Enabling and disabling data-triggered processing

By default, data-triggered processing is disabled on all storages.

Explicit control is available via the configuration properties for storages, as listed in Section 12
Set the enableTrigger property to "true" to enable the data-triggered processing for the given
storage.

14.2 Controlling the scanning process

To control which directories should be scanned, a file named .UNICORE_Rules at the top-
level of the storage is read and evaluated. This file can be (and usually will be) edited and
uploaded by the user.

The file must be in JSON format, and has the following elements:

{
"DirectoryScan": {

"IncludeDirs": [
"project.*",

],
"ExcludeDirs": [

"project42",
],
"Interval": "30",

},

"Rules": []

}

The "IncludeDirs" and "ExcludeDirs" are lists of Java regular expression strings that denote
directories (as always relative to the storage root) that should be included or excluded from the
scan.

The "Rules" section controls which files are to be processed, and what is to be done (actions).
This is described below.

14.3 Special case: shared storages

Since shared storages are "owned" by the UNICORE server and used by multiple users, data-
triggered processing requires a valid Unix user ID in order to list files independently of any
actual user. Therefore the triggerUserID property is used to configure which user ID should be
used (as always in UNICORE, this cannot be root, and multiuser operation requires the TSI!).

For example, you might have a project storage configured like this:

UNICORE/X Manual 102

#
Shares
#
coreServices.sms.storage.enabledStorages=PROJECTS

coreServices.sms.storage.PROJECTS.name=projects
coreServices.sms.storage.PROJECTS.description=Shared projects
coreServices.sms.storage.PROJECTS.path=/opt/shared-data
coreServices.sms.storage.PROJECTS.defaultUmask=007
coreServices.sms.storage.PROJECTS.enableTrigger=true
coreServices.sms.storage.PROJECTS.triggerUserID=projects01

Here the scanning settings are only evaluated top-level.

For each included directory, a separate scan is done, controlled by another .UNICORE_Rules
file in that directory. So the directory structure could look like this:

├── dir1
│~~ ├── ...
│~~ └── .UNICORE_Rules
├── dir2
│~~ ├── ...
│~~ └── .UNICORE_Rules
├── dir3
│~~ ├── ...
│~~ └── .UNICORE_Rules
└── .UNICORE_Rules

The top-level .UNICORE_Rules file must list the included directories. Processing the in-
cluded directories is then done using the owner of that directory.

14.4 Rules

The "Rules" section in the .UNICORE_Rules file is a list of file match specifications together
with a definition of an "action", i.e. what should be done for those files that match.

The general syntax is

{
"DirectoryScan": {
"IncludeDirs": [...],
"ExcludeDirs": [...]

},

"Rules": [
{

"Name": "foo",
"Match": ".*incoming/file_.*",

UNICORE/X Manual 103

"Action": { ... }
}

]
}

The mandatory elements are

• Name : the name of the rule. This is useful when checking the logfiles,

• Match : a regular expression defining which file paths (relative to storage root) should be
processed,

• Action : the action to be taken.

14.4.1 Variables

The following variables can be used in the Action description.

• UC_BASE_DIR : the storage root directory

• UC_CURRENT_DIR : the absolute path to the parent directory of the current file

• UC_FILE_PATH : the full path to the current file

• UC_FILE_NAME : the file name

14.4.2 Scripts

This type of action defines a script that is executed on the cluster login node (TSI node).

"Action":
{
"Name": "local_example",
"Type": "LOCAL",
"Command": "/bin/md5sum ${UC_FILE_PATH}",
"Outcome": "output_directory",
"Stdout": "${UC_FILE_NAME}.md5",
"Stderr": "${UC_FILE_NAME}.error"

}

14.4.3 Batch jobs

This type of action defines a batch job that is submitted to the resource management system of
your cluster.

UNICORE/X Manual 104

"Action":
{
"Name": "batch_example",
"Type": "BATCH",
"Job": { ... }

}

The Job element is a normal UNICORE job in the same syntax as used for the UCC comman-
dline client.

14.4.4 Automated metadata extraction

"Action":
{
"Name": "extract_example",
"Type": "EXTRACT",
"Settings": { ... }

}

This action will extract metadata from the file. The Settings element is currently unused.

15 Authorization back-end (PDP) guide

The authorization process in UNICORE/X requires that nearly all operations must be authorized
prior to execution (exceptions may be safely ignored).

UNICORE allows to choose which authorization back-end is used. The module which is re-
sponsible for this operation is called Policy Decision Point (PDP). You can choose one among
already available PDP modules or even develop your own engine.

Local PDPs use a set of policy files to reach an authorisation decision, remote PDPs query a
remote service.

Local UNICORE PDPs use the XACML language to express the authorization policy. The
XACML policy language is introduced in the Guide to XACML security policies Section 16.
You can also review this guide if you want to have a deeper understanding of the authorization
process.

15.1 Basic configuration

Note
The full list of options related to PDP is available here: Section 2.8.2.

UNICORE/X Manual 105

There are three options which are relevant to all PDPs:

• container.security.accesscontrol (values: true or false) This boolean prop-
erty can be used to completely turn off the authorization. This guide makes sense only if this
option is set to true. Except for test scenarios this should never be switched off, otherwise
every user can in principle access all resources on the server.

• container.security.accesscontrol.pdp (value: full class name) This property
is used to choose which PDP module is being used.

• container.security.accesscontrol.pdpConfig (value: file path) This prop-
erty provides a location of a configuration file of the selected PDP.

15.2 Available PDP modules

15.2.1 XACML 2.0 PDP

The implementation class of this module is: eu.unicore.uas.pdp.local.LocalHerasafPDP
so to enable this module use the following configuration in uas.config:

container.security.accesscontrol.pdpConfig=<CONFIG_DIR>/xacml2.conf
container.security.accesscontrol.pdp=eu.unicore.uas.pdp.local. ←↩

LocalHerasafPDP

The configuration file content is very simplistic as it is enough to define only few options:

The directory where XACML 2.0 policy files are stored
localpdp.directory=conf/xacml2Policies

Wildcard expression to select actual policy files from the ←↩
directory defined above

localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML ←↩
id or its last part.

localpdp.combiningAlg=first-applicable

The policies from the localpdp.directory are always evaluated in alphabetical order, so
it is good to name files with a number. By default the first-applicable combining algorithm is
used and UNICORE policy is stored in two files: 01coreServices.xml and 99finalDeny.xml. The
first file contains the default access policy, the latter a single fall through deny rule. Therefore
you can put your own policies using an additional file in file named e.g. 50localRules.xml.

The policies are reloaded whenever you change (or touch) the configuration file of this PDP,
e.g. like this:

touch conf/xacml2.conf

UNICORE/X Manual 106

15.2.2 Remote SAML/XACML 2.0 PDP with Argus PAP

Note
Releases 6.5.x of UNICORE offered an other Argus PDP implementation which allows for off-
sourcing authorisation decision to a remote Argus PDP daemon. While this implementation
was working, in the Argus policy language it is impossible to express any rules using the
resource owner. Therefore creation of a functional policy for UNICORE with Argus is barely
possible and this implementation was dropped in UNICORE 6.6.0.

This PDP allows for mixing local policies with policies downloaded from a remote server using
SAML protocol for XACML policy query. This protocol is implemented by Argus PAP server
Argus PAP. Please note that under the name Argus there is a whole portfolio of services, but for
purpose of UNICORE integration Argus PAP is the only one required.

Usage of Argus PAP together with UNICORE policies is useful as Argus PAP allows for a quite
easy editing of authorization policies with its Simplified Policy Language. It is less powerful
then XACML but allows for performing all the typical tasks like banning selected users or VOs.
Also if Argus is used to provide authorization rules for other middleware installed at the site (as
gLite or ARC), it might be desirable to have a single place to store site-wide policies.

Unfortunately as Argus policy can not fully take over the UNICORE authorization (see the
above note for details), the Argus policy must be combined with the classic UNICORE XACML
2 policy, stored locally.

The implementation class of this module is: eu.unicore.uas.pdp.argus.ArgusPDP
so to enable this module use the following configuration in uas.config:

container.security.accesscontrol.pdpConfig=<CONFIG_DIR>/argus. ←↩
config

container.security.accesscontrol.pdp=eu.unicore.uas.pdp.argus. ←↩
ArgusPAP

The PDP configuration is very simple as it is only required to provide the Argus endpoint and
query timeout (in milliseconds).

The directory where XACML 2.0 policy files are stored
(both local and downloaded from Argus PAP)
localpdp.directory=conf/xacml2PoliciesWithArgus

Wildcard expression to select actual policy files from the ←↩
directory defined above

localpdp.filesWildcard=*.xml

Combining algorithm for the policies. You can use the full XACML ←↩
id or its last part.

This algorithm will be used to combine the Argus and local ←↩
policies.

localpdp.combiningAlg=first-applicable

https://twiki.cern.ch/twiki/bin/view/EGEE/AuthorizationFramework

UNICORE/X Manual 107

Address of the Argus PAP server. Typically only the hostname ←↩
needs to be changed,

rarely the port.
argus.pap.serverAddress=https://localhost:8150/pap/services/ ←↩

ProvisioningService

What is the name of a file to which a downloaded Argus policy is ←↩
saved.

Note that name of this file is very important as it determines ←↩
policies evaluation order.

Here the Argus policy will be evaluated first.
argus.pap.policysetFilename=00argus.xml

How often (in ms) the Argus PAP should be queried for a new ←↩
policy

argus.pap.queryInterval=3600000

What is the Argus query timeout in ms.
argus.pap.queryTimeout=15000

If Argus PAP is unavailable for that long (in ms) the PDP will ←↩
black all users

assuming that the policy is outdated. Use negative value to ←↩
disable this feature.

argus.pap.deny.timeout=36000000

You can use both http and https addresses. In the latter case server’s certificate is used to make
the connection. Note that all localpdp.* settings are the same as in case of the default, local
XACML 2.0 PDP.

Using the available configuration options, it is possible to merge Argus policies in many differ-
ent ways. Here we present a simple pattern, which is good for cases when Argus is used to ban
users (it was also applied to the example above):

• Argus policy should be saved to a file which will be evaluated first, e.g. 00argus.xml

• Default XACML 2.0 policies of UNICORE local PDP should be added to the directory, with-
out any changes.

• The policy combining algorithm should be first-applicable

• Argus PAP policies should include a series of deny statements (see Argus documentation for
details) and no final permit (or deny) fall-trough rule.

Then Argus policy will be evaluated first. If any banning rule matches the user then it will be
denied by the Argus policy. Otherwise it will be non-applicable and the local, default UNICORE
policy will be evaluated. Note that if it is problematic for other (non-UNICORE) services using

UNICORE/X Manual 108

Argus, to remove the final fall-through permit or deny rule, then you can add such rule, but with
a proper resource statement so it will be applicable only for non-UNICORE components.

Of course it is also possible to creatively design other patterns, when for instance Argus policy
is evaluated as a second one.

16 Guide to XACML security policies

XACML authorization policies need not to be modified on a day-to-day basis when running
the UNICORE server. The most common tasks as banning or allowing users can be performed
very easily using UNICORE Attribute Sources like XUUDB or Unity. This guide is intended
for advanced administrators who want to change the non-standard authorization process and for
developers who want to provide authorization policies for services they create.

The XACML standard is a powerful way to express fine grained access control. The idea is to
have XML policies describing how and by whom actions on resources can be performed. A
very readable introduction into XACML can be found with Sun’s XACML implementation.

There are several versions of XACML policy language. Currently UNICORE supports both 1.x
and 2.0 versions. Those are quite similar and use same concepts, however note that syntax is a
bit different. In this guide we provide examples using XACML 2.0. The same examples in the
legacy XACML 1.1 format are available in xref:use_policies-11.

UNICORE allows to choose one of several authorization back-end implementations called Pol-
icy Decision Points (PDP). Among others you can decide whether to use local XACML 1.x
policies or local XACML 2.0 policies. The authorization section Section 15 shows how to
choose and configure each of the available PDPs.

In UNICORE terms XACML is used as follows. Before each operation (i.e. execution of a web
service call), an XACML request is generated, which currently includes the following attributes:

XACML attribute name XACML
category

XACML
type

Description

urn:oasis:names:tc:xacml:1.0:resource:resource-idResource AnyURI WS service name
urn:unicore:wsresourceResource String Identifier of the WSRF

resource instance (if any).
owner Resource X.500

name
The name of the VO
resource owner.

voMembership-VONAME Resource String For each VO the accessed
resource is a member, there
is such attribute with the
VONAME set to the VO,
and with the value
specifying allowed access
type, using the same action
categories as are used for
the actionType
attribute.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
http://sunxacml.sourceforge.net/guide.html#xacml

UNICORE/X Manual 109

XACML attribute name XACML
category

XACML
type

Description

actionType Action String Action type or category.
Currently read for
read-only operation and
modify for others.

urn:oasis:names:tc:xacml:1.0:action:action-idAction String WS operation name.
urn:oasis:names:tc:xacml:1.0:subject:subject-idSubject X.500

name
User’s DN.

role Subject String The user’s role.
consignor Subject X.500

name
Client’s (consignor’s) DN.

vo Subject Strings Bag with all VOs the user is
member of (if any).

selectedVo Subject String The effective, selected VO
(if any).

Note that the above list is valid for the default local XACML 2 and legacy XACML 1.x PDPs.
For others the attributes might be different - see the respective documentation.

The request is processed by the server and checked against a (set of) policies. Policies contain
rules that can either deny or permit a request, using a powerful set of functions.

16.1 Policy sets and combining of results

Typically, the authorization policy is stored in one file. However as this file can get long and
unmanageable sometimes it is better to split it into several ones. This additionally allows to
easily plug additional policies to the existing authorization process. In UNICORE, this feature
is implemented in the XAML 2.0 PDP.

When policies are split in multiple files each of those files must contain (at least one) a separate
policy. A PDP must somehow combine result of evaluation of multiple policies. This is done
by so-called policy combining algorithm. The following algorithms are available, the part after
last colon describes behaviour of each:

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered- ←↩
permit-overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:permit- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:policy-combining-algorithm:ordered- ←↩
deny-overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:first- ←↩
applicable

urn:oasis:names:tc:xacml:1.0:policy-combining-algorithm:only-one- ←↩
applicable

UNICORE/X Manual 110

Each policy file can contain one or more rules, so it is important to understand how possible
conflicts are resolved. The so-called combining algorithm for the rules in a single policy file is
specified in the top-level Policy element.

The XACML (from version 1.1 onwards) specification defines six algorithms: permit-overrides,
deny-overrides, first-applicable, only-one-applicable, ordered-permit-overrides and ordered-deny-
overrides. For example, to specify that the first matching rule in the policy file is used to make
the decision, the Policy element must contain the following "RuleCombiningAlgId" attribute:

<Policy xmlns="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="ExamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule- ←↩

combining-algorithm:first-applicable">

The full identifiers of the combining algorithms are as follows:

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered-deny- ←↩
overrides

urn:oasis:names:tc:xacml:1.1:rule-combining-algorithm:ordered- ←↩
permit-overrides

urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:first- ←↩
applicable

16.2 Role-based access to services

A common use case is to allow/permit access to a certain service based on a user’s role This can
be achieved with the following XACML rule, which describes that a user with role "admin" is
given access to all services.

<Rule RuleId="Permit:Admin" Effect="Permit">
<Description> Role "admin" may do anything. </Description>
<Target />
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

string-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:string-one-and-only">
<SubjectAttributeDesignator

DataType="http://www.w3.org/2001/XMLSchema# ←↩
string" AttributeId="role" />

</Apply>
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#string">admin</AttributeValue>

UNICORE/X Manual 111

</Apply>
</Condition>

</Rule>

If the access should be limited to a certain service, the Target element must contain a service
identifier, as follows. In this example, access to the DataService is granted to those who have
the data-access role.

<Rule RuleId="rule2" Effect="Permit">
<Description>Allow users with role "data-access" access to ←↩

the DataService</Description>
<Target>
<Resources>

<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#anyURI">DataService</AttributeValue>
<ResourceAttributeDesignator AttributeId="urn:oasis ←↩

:names:tc:xacml:1.0:resource:resource-id"
DataType="http://www. ←↩

w3.org/2001/ ←↩
XMLSchema#anyURI" ←↩
MustBePresent=" ←↩
true" />

</ResourceMatch>
</Resource>

</Resources>
</Target>

<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

string-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:string-one-and-only">
<SubjectAttributeDesignator DataType="http://www.w3. ←↩

org/2001/XMLSchema#string" AttributeId="role" />
</Apply>

<AttributeValue DataType="http://www.w3.org/2001/ ←↩
XMLSchema#string">data-access</AttributeValue>

</Apply>
</Condition>

By using the <Action> tag in policies, web service access can be controlled on the method level.
In principle, XACML supports even control based on the content of some XML document, such
as the incoming SOAP request. However this is not yet used in UNICORE/X.

UNICORE/X Manual 112

16.3 Limiting access to services to the service instance owner

Most service instances (corresponding e.g. to jobs, or files) should only ever be accessed by
their owner. This rule is expressed as follows:

<Rule RuleId="Permit:AnyResource_for_its_owner" Effect="Permit">
<Description> Access to any resource is granted for its ←↩

owner </Description>
<Target />
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:x500Name-one-and-only">
<SubjectAttributeDesignator AttributeId="urn:oasis: ←↩

names:tc:xacml:1.0:subject:subject-id"
DataType="urn:oasis:names ←↩

:tc:xacml:1.0:data- ←↩
type:x500Name"

MustBePresent="true" />
</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0: ←↩

function:x500Name-one-and-only">
<ResourceAttributeDesignator
AttributeId="owner" DataType="urn:oasis:names:tc: ←↩

xacml:1.0:data-type:x500Name"
MustBePresent="true" />

</Apply>
</Apply>

</Condition>
</Rule>

16.4 More details on XACML use in UNICORE/X

To get more detailed information about XACML policies (e.g. to get the list of all available
functions etc) consult the XACML specification. To get more information on XACML use in
UNICORE/X it is good to set the logging level of security messages to DEBUG:

log4j.logger.unicore.security=DEBUG

You will be able to read what input is given to the XACML engine and what is the detailed
answer. Alternatively, ask on the support mailing list.

16.5 Policy examples in XACML 1.1 syntax

This section contains the same examples as are contained in the previous section, but using
XACML 1.x syntax. For more detailed discussion of each example please refer to the previous
section.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
mailto:unicore-support@lists.sf.net

UNICORE/X Manual 113

Policy header with first-applicable combining algorithm.

<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
PolicyId="ExamplePolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule- ←↩

combining-algorithm:first-applicable">

A user with role "admin" is given access to all service.

<Rule RuleId="rule1" Effect="Permit">
<Description>Allow users with role "admin" access to any service</ ←↩

Description>
<Target>
<Subjects>
<AnySubject/>

</Subjects>
<Resources>
<AnyResource/>

</Resources>
<Actions>
<AnyAction/>

</Actions>
</Target>

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩
string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string- ←↩
one-and-only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/ ←↩
XMLSchema#string" AttributeId="role" />

</Apply>
<!-- here is the role value -->
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema# ←↩

string">admin</AttributeValue>
</Condition>
/Rule>

Defining which resource access is defined with the Target element:

<Rule RuleId="rule2" Effect="Permit">
<Description>Allow users with role "data-access" access to the ←↩

DataService</Description>
<Target>
<Subjects>
<AnySubject/>

</Subjects>
<Resources>
<!-- specify the data service -->
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">

UNICORE/X Manual 114

<AttributeValue DataType="http://www.w3.org/2001/ ←↩
XMLSchema#anyURI">DataService</AttributeValue>

<ResourceAttributeDesignator DataType="http://www.w3.org ←↩
/2001/XMLSchema#anyURI"

AttributeId="urn:oasis:names ←↩
:tc:xacml:1.0:resource: ←↩
resource-id"/>

</ResourceMatch>
</Resource>
</Resources>
<Actions>
<AnyAction/>

</Actions>
</Target>

<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩
string-equal">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string- ←↩
one-and-only">

<SubjectAttributeDesignator DataType="http://www.w3.org/2001/ ←↩
XMLSchema#string" AttributeId="role" />

</Apply>
<!-- here is the role value -->
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema# ←↩

string">data-access</AttributeValue>
</Condition>
/Rule>

Allowing access for the resource owner:

<Rule RuleId="PermitJobManagementServiceForOwner" Effect="Permit">
<Description>testing</Description>
<Target>

<Subjects> <AnySubject/> </Subjects>
<Resources>
<Resource>
<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0: ←↩

function:anyURI-equal">
<AttributeValue DataType="http://www.w3.org/2001/ ←↩

XMLSchema#anyURI">JobManagementService</ ←↩
AttributeValue>

<ResourceAttributeDesignator AttributeId="urn:oasis:names ←↩
:tc:xacml:1.0:resource:resource-id" DataType="http:// ←↩
www.w3.org/2001/XMLSchema#anyURI" MustBePresent="true ←↩
"/>

</ResourceMatch>
</Resource>

</Resources>
<Actions> <AnyAction/> </Actions>

</Target>
<Condition FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

UNICORE/X Manual 115

x500Name-equal">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-one-and-only">
<SubjectAttributeDesignator AttributeId="urn:oasis:names:tc: ←↩

xacml:1.0:subject:subject-id" DataType="urn:oasis:names: ←↩
tc:xacml:1.0:data-type:x500Name" MustBePresent="true"/>

</Apply>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function: ←↩

x500Name-one-and-only">
<ResourceAttributeDesignator AttributeId="owner" DataType=" ←↩

urn:oasis:names:tc:xacml:1.0:data-type:x500Name" ←↩
MustBePresent="true"/>

</Apply>
</Condition>

</Rule>

17 XtreemFS support

XtreemFS is a distributed filesystem (see http://www.xtreemfs.org).

XtreemFS can be mounted locally at more than one UNICORE site, making it desirable to have
an optimized way of moving files used in UNICORE jobs into and out of XtreemFS.

To achieve this, UNICORE supports a special URL scheme "xtreemfs://" for data staging (i.e.
moving data into the job directory prior to execution, and moveing data out of the job directory
after execution).

As an example, in their jobs users can write (using a UCC example):

{

Imports:
[
{ From: "xtreemfs://CN=test/test.txt", To: "infile", },

]

}

to have a file staged in from XtreemFS.

17.1 Site setup

At a site that wishes to support XtreemFS, two ways of providing access are possible. If
XtreemFS is mounted locally and accessible to the UNICORE TSI, it is required to define
the mount point in CONF/uas.config :

coreServices.xtreemfs.mountpoint=...

http://www.xtreemfs.org

UNICORE/X Manual 116

In this case, data will simply be copied by the TSI.

If XtreemFS is not mounted locally, it is possible to define the URL of a UNICORE Storage
which provides access to XtreemFS

coreServices.xtreemfs.url=https://...

In this case, data will be moved using the usual UNICORE file transfer mechanism.

18 Cloud storages support (S3, Swift, CDMI)

UNICORE/X can use S3, Swift or CDMI storages as backend. These storages can be configured
both as a normal storage (shared or attached to target systems) and as storage backend for the
StorageFactory service (see also Section 12)

18.1 Basic configuration

Configuring a cloud storage as a shared storage works exactly as described in Section 12, you
just have to make sure to use the required properties.

The following sections list the required properties for all of the supported cloud storages. Note
that the prefix depends on what type of storage (shared, dynamic, TSS, job working directory)
is being configured.

18.1.1 S3

<prefix>.type=CUSTOM
<prefix>.class=de.fzj.unicore.uas.jclouds.s3.S3StorageImpl
<prefix>.infoProviderClass=de.fzj.unicore.uas.jclouds.s3. ←↩

S3InfoProvider

provider is "s3" or "aws-s3"
<prefix>.settings.provider=s3

http(s) URL of the S3 storage
<prefix>.settings.endpoint=...

authentication keys
<prefix>.settings.accessKey=...
<prefix>.settings.secretKey=...

may the user set the endpoint (default: false)
<prefix>.settings.allowUserDefinedEndpoint=false

UNICORE/X Manual 117

18.1.2 Swift

<prefix>.type=CUSTOM
<prefix>.class=de.fzj.unicore.uas.jclouds.swift.SwiftStorageImpl
<prefix>.infoProviderClass=de.fzj.unicore.uas.jclouds.swift. ←↩

SwiftInfoProvider

http(s) URL of the Swift storage
<prefix>.settings.endpoint=...

authentication username/password
<prefix>.settings.username=...
<prefix>.settings.password=...

allow the user to set the endpoint
<prefix>.settings.allowUserDefinedEndpoint=true

18.1.3 CDMI

<prefix>.type=CUSTOM
<prefix>.class=de.fzj.unicore.uas.cdmi.CDMIStorageImpl
<prefix>.infoProviderClass=de.fzj.unicore.uas.cdmi.CDMIInfoProvider

http(s) URL of the CDMI storage
<prefix>.settings.endpoint=...

authentication username/password
<prefix>.settings.username=...
<prefix>.settings.password=...

Openstack Keystone token endpoint
if not set, HTTP basic authentication will be used
<prefix>.settings.tokenEndpoint=...

allow the user to set the endpoint
<prefix>.settings.allowUserDefinedEndpoint=true

Compare the examples below! The authentication keys can be handled flexibly, as detailed in
the next section.

18.2 Authentication credentials

There are several ways to configure the required credentials for authenticating the user to the
cloud store. Two of them are done server-side (i.e. by the UNICORE administrator) and the
third uses the credentias provided by the user.

UNICORE/X looks for credentials in the following order

UNICORE/X Manual 118

• credentials provided by the user

• per-user credentials provided via UNICORE’s attribute sources

• fixed credentials provided in the server config

It is always possible for the user to pass in credentials when creating the storage using the
StorageFactory service. Of course this mechanism does not apply when using a cloud store for
a different type of storage service.

The second option (using attribute sources) allows to configure per-user credentials, but man-
aging everything server-side, so the user has a nice single-sign-on experience when using UNI-
CORE.

If you use the map file attribute source, an example entry looks like this:

<entry key="CN=Demo User,O=UNICORE,C=EU">

<!-- standard UNICORE attributes -->

<attribute name="role">
<value>user</value>

</attribute>
<attribute name="xlogin">

<value>somebody</value>
</attribute>
<attribute name="group">

<value>users</value>
</attribute>

<!-- S3 specific attributes -->

<attribute name="s3.accessKey">
<value> ... access key data omitted ... </value>

</attribute>
<attribute name="s3.secretKey">

<value> ... secret key data omitted ... </value>
</attribute>

</entry>

Last not least, the keys can also be hardcoded into the config, using the accessKey and secretKey
properties.

authentication keys
<prefix>.settings.accessKey=...
<prefix>.settings.secretKey=...

UNICORE/X Manual 119

18.3 Examples

18.3.1 Dynamic storage using the StorageFactory

If configured as a dynamic storage, a new directory will be created corresponding to each stor-
age.

In the following example we configure S3 in addition to the "DEFAULT" storage type.

#
Available storage types
#
coreServices.sms.factory.storagetypes=DEFAULT S3

#
NOTE
#
the configuration for the "DEFAULT" storage type
is OMITTED in this example!
#

#
S3 storage configuration
#
coreServices.sms.factory.S3.description=S3 interface
coreServices.sms.factory.S3.type=CUSTOM
coreServices.sms.factory.S3.class=de.fzj.unicore.uas.jclouds.s3. ←↩

S3StorageImpl
coreServices.sms.factory.S3.infoProviderClass=de.fzj.unicore.uas. ←↩

jclouds.s3.S3InfoProvider
coreServices.sms.factory.S3.path=/dynamic-storages
coreServices.sms.factory.S3.cleanup=false
coreServices.sms.factory.S3.protocols=BFT

#
the next four settings depend on your S3 backend
#

provider is "s3" or "aws-s3"
coreServices.sms.factory.S3.settings.provider=s3
endpoint of the S3
coreServices.sms.factory.S3.settings.endpoint=...
OPTIONAL access key and secret key
coreServices.sms.factory.S3.settings.accessKey=...
coreServices.sms.factory.S3.settings.secretKey=...

optional: may user overwrite endpoint and provider?
this defaults to ’false’!
coreServices.sms.factory.S3.settings.allowUserdefinedEndpoint=true

UNICORE/X Manual 120

18.3.2 Shared storage

add ’S3’ to the list of enabled shares
coreServices.sms.storage.enabledStorages=S3 ...

S3 configuration
coreServices.sms.storage.S3.description=S3 interface
coreServices.sms.storage.S3.type=CUSTOM
coreServices.sms.storage.S3.class=de.fzj.unicore.uas.jclouds.s3. ←↩

S3StorageImpl
coreServices.sms.storage.S3.infoProviderClass=de.fzj.unicore.uas. ←↩

jclouds.s3.S3InfoProvider
coreServices.sms.storage.S3.path=/
coreServices.sms.storage.S3.protocols=BFT

coreServices.sms.storage.S3.settings.provider=s3
coreServices.sms.storage.S3.settings.endpoint=...
coreServices.sms.storage.S3.settings.accessKey=...
coreServices.sms.storage.S3.settings.secretKey=...

Configuring as a TSS storage works accordingly.

	Getting started
	Prerequisites
	Installation

	Configuration of UNICORE/X
	Overview of the main configuration options
	Config file overview
	Settings for the UNICORE/X process (e.g. memory)
	Config file formats
	UNICORE/X container configuration overview
	Integration of UNICORE/X with other parts of a UNICORE infrastructure
	Startup code
	Security
	Configuring the execution backend (XNJS and TSI)
	Configuring storage services
	HTTP proxy, timeout and web server settings
	Features provided by UNICORE/X

	Administration
	Controlling UNICORE/X memory usage
	Logging
	Administration and monitoring
	Migration of a UNICORE/X server to another physical host

	Security concepts in UNICORE/X
	Security concepts

	Attribute sources
	UNICORE incarnation and authorization attributes
	Configuring Attribute Sources
	Available attribute sources

	RESTful services
	Authentication
	JWT Delegation

	The UNICORE persistence layer
	Configuring the persistence layer
	Clustering

	Configuring the XNJS
	The UNICORE TSI
	Operation without a UNICORE TSI

	The IDB
	Defining the IDB location
	IDB syntax description
	IDB Application definitions
	Application argument metadata
	Tweaking the incarnation process
	Incarnation tweaking context

	Data staging
	SCP support
	Mail support
	GridFTP
	Configuration reference

	UFTP setup
	Configuration of storages
	Configuring storage services
	Configuring storages attached to TargetSystem instances
	Configuring the StorageFactory service
	Configuring the job working directory storage services

	The UNICORE metadata service
	Configuring metadata support
	Controlling metadata extraction

	Data-triggered processing
	Enabling and disabling data-triggered processing
	Controlling the scanning process
	Special case: shared storages
	Rules

	Authorization back-end (PDP) guide
	Basic configuration
	Available PDP modules

	Guide to XACML security policies
	Policy sets and combining of results
	Role-based access to services
	Limiting access to services to the service instance owner
	More details on XACML use in UNICORE/X
	Policy examples in XACML 1.1 syntax

	XtreemFS support
	Site setup

	Cloud storages support (S3, Swift, CDMI)
	Basic configuration
	Authentication credentials
	Examples

