
UNICORE Rich Client user manual

UNICORE RICH CLIENT USER MANUAL

UNICORE Team

Document Version: 7.3.2
Component Version: 7.3.2
Date: 11 10 2016

UNICORE Rich Client user manual

Contents

1 Introduction 1

2 Installation and Startup 2

2.1 Prerequisites . 2

2.2 Procedure . 2

3 Basic usage guide 4

3.1 Welcome screen . 4

3.2 The Eclipse workbench . 6

3.3 Basic security configuration . 8

3.4 Browsing and monitoring the Grid . 12

3.5 Job submission and visualisation of job outcomes 15

3.6 The Workflow editor . 23

3.7 Interactive site access . 30

4 Advanced Usage Scenarios 32

4.1 File sets and file names with wildcards . 32

4.2 Metadata Management Functions . 34

5 Troubleshooting 40

5.1 Event Dialogs and the Client Log . 40

5.2 Common Problems . 41

6 Reference 44

6.1 A brief history of UNICORE . 44

6.2 Advanced security configuration . 44

6.3 Pull Down Menus . 46

6.4 Preferences . 52

6.5 Optional command line arguments . 61

7 Glossary 62

UNICORE Rich Client user manual 1

1 Introduction

This document describes how to install and use the Eclipse based Rich Client for the UNICORE
workflow system. UNICORE is a European project that facilitates the access to modern hetero-
geneous computer networks, so called ‘Grids’. It offers a client-server framework for accessing
Grid resources. It has a service oriented architecture (SOA) which means that the functions of
the software are grouped into small coherent chunks (named ‘services’) which can be installed
on different computer systems.

The client software enables users to create descriptions of work to be performed on the Grid,
so called ‘jobs’. A single job usually corresponds to the execution of a computer program on
one of the available computer systems in the Grid. Once a job has been created, the UNICORE
Rich Client can submit it to a selected computer system. The remote execution of the job
can be monitored and output files of the executed program can be downloaded to the user’s
computer. In order to accomplish more complex tasks on the Grid, jobs can be embedded into
workflows. In our terminology, a workflow is a set of activities (the execution of a single job
would be considered an activity), interconnected by transitions that define the order in which
the activities must be performed. Workflows can be created and edited graphically. Similar to
jobs, they can be submitted to a designated service on the Grid which executes them. Workflow
execution can be monitored in multiple ways and resulting output files can be downloaded
to the local harddisk. Apart from these basic features, the UNICORE Rich Client offers a
bunch of additional functions like browsing and monitoring services on the Grid, managing
user certificates, and transferring files to and from Grid storages.

This document is structured into the following parts: Section 2 describes the installation pro-
cedure and how to startup the client application. Section 3 tries to give a brief overview of
the basic features and most frequent use cases of this application. Section 4 introduces and
describes more advanced features and functions, while Section 5 covers common problems and
issues. Section 6 provides a reference guide to the main pull down menu, user preferences, and
command line arguments to the client application.

UNICORE Rich Client user manual 2

2 Installation and Startup

2.1 Prerequisites

• Operating Systems: currently Linux, MacOS X, and Microsoft Windows are supported. 1

• Java Runtime Environment: OpenJDK or Oracle Java 8 or higher is required. 2

2.2 Procedure

• Download the installation archive that matches your operating system.

• Unzip the archive to the desired location.

• Run the executable called ‘UNICORE_Rich_Client.exe’ (or ‘UNICORE_Rich_Client’, on a
Unix/Linux machine). A splash screen will indicate the startup of the client.

• The splash screen will disappear and make way for the credentials wizard, where you can
setup your credentials and truststore that will be used within this session.

• Configure your credentials and truststore settings (see Figure 1). For example, a Java key-
store file (.jks) containing trusted X509 certificate authorities and your private key(s) must be
selected (see Section 3.3 for details about why this is necessary). By default, a keystore that
contains everything you need in order to test the client with a UNICORE quickstart server in-
stallation is selected. The default password for this common keystore and truststore is "321".
You will need this information if you do not select the "Save" option at the end of the pass-
word lines when you first start the client.

• When configuring your client to authenticate via Unity 3, be sure to use the Authentic
ationService within your UNITY UNICORE SOAP SAML service endpoint. The
normal path of the URL is highlighted in Figure 1. Most Unity installations will follow this
pattern.

1 Eclipse’s windowing toolkit, the Standard Widget Toolkit (SWT) directly talks to the operating system’s win-
dowing system. While SWT loses its platform independence through this approach, it allows for seamless integration
with the look and feel of different operating systems.

2 Other Java implementations (e.g. by GNU or IBM) are not supported.
3 Unity IDM - http://www.unity-idm.eu/

http://www.unity-idm.eu/

UNICORE Rich Client user manual 3

Figure 1: Credential Setup

• While configuring your credentials with the MyProxy settings, you have to check the “Down-
load credential from MyProxy” option. This will enable the MyProxy related user input
fields.

• If you select the “Directory” or “OpenSSL Directory” options in the “Trustore” tab, this will
allow you to select a directory with “PEM” encoded X.509 trusted certificates.

Figure 2: Directory Setup

UNICORE Rich Client user manual 4

• Directory option allows you to include a directory as a trust store which has a list of files with
“.pem”, “.cert”, and “*.crt” extensions. The client offers no option to add any other file types
that do not match the said extensions.

Figure 3: OpenSSL Setup

• OpenSSL option allows you to use a directory with CA certificates stored in PEM format,
under precisely defined names: the CA certificates, CRLs, signing policy files and names-
paces files are named <hash>.0, <hash>.r0, <hash>.signing_policy and <hash>.namespaces.
Hash is the old hash of the trusted CA certificate subject name (in Openssl version > 1.0.0
use -subject_hash_old switch to generate it). If multiple certificates have the same hash then
the default zero number must be increased. This format is the same as used by other then
UNICORE popular middlewares as Globus and gLite. It is suggested when a common trust
store with such middlewares is needed.

3 Basic usage guide

3.1 Welcome screen

When the client is started for the first time, it will display a welcome screen that provides
valuable information and helps in making the first steps with the UNICORE Rich Client (see
Figure 4).

UNICORE Rich Client user manual 5

Figure 4: The Welcome screen

The welcome screen is composed of several web pages that are displayed in the internal web
browser of the client:

• The Overview page 1 contains links to parts of this document and the Eclipse framework’s
user manual.

• The First Steps page 2 helps in configuring the client for accessing different Grids.

• The Tutorials page 3 offers links to Flash-based online tutorials that will be displayed in a
web browser.

• The What’s New page 4 summarizes the most important new features of the current client
version and lists general UNICORE related news.

A navigation bar on top of each page contains hyperlinks to the other pages. The toolbar of the
welcome screen can also be used to navigate back and forth between the pages 5 . In order to
leave the welcome screen and start working with the client, click the Workbench hyperlink 6 .
The welcome screen can later be re-opened via the Help → Welcome pull down menu item.

UNICORE Rich Client user manual 6

3.2 The Eclipse workbench

The client’s main window is called the workbench (see Figure 5). It has different components
which can be opened, closed, resized, re-ordered and even detached from the main window.

Figure 5: The Eclipse workbench

3.2.1 Menu bar and tool bar

At the top of the workbench, there is a menu bar from which different pull down menus con-
taining ‘global’ actions can be opened 1 . For convenience, some actions are available via
shortcuts from the tool bar just below the menu bar. The items in the tool bar can change de-
pending on the selection of objects in the client, mirroring the fact that different actions can be
performed on different objects.

3.2.2 Views

Resizeable and draggable tab panels containing buttons and other controls are an integral part
of all Eclipse based clients. These panels are called views 2 . Apart from being resized and

UNICORE Rich Client user manual 7

moved, they can also be closed and re-opened. Detaching a view from the workbench will
embed the view in its own window. Double-clicking its title will maximise it and double-
clicking the title once more will restore its original size. Some views are ‘singletons’, so only
one instance of the view can be opened, whereas other views can be opened multiple times,
showing a different content in each instance.

3.2.3 The workspace

The workspace is a directory, usually located on the local hard drive 3 . It is supposed to
hold all relevant user data needed for the daily work with an Eclipse-based client. Inside the
workspace, the user data is organised in subfolders, so-called projects. All files within a project
should be thematically related. In the UNICORE Rich Client, each job description file (with
the extension ‘.job’) and each workflow description file (`.flow’ file) is stored in its own project,
together with its input files. Having a separate project for each job or workflow has the following
advantages:

1. Jobs and workflows can get complex. They may need a large number of input files that
might be organised in their own directory structure. Mixing up multiple jobs or workflows
in a single project can therefore lead to mixing up input and/or output files.

2. Eclipse has its own notion of importing and exporting projects. This provides a nice
mechanism for exporting jobs and workflows (e.g. to a single zipped file that contains all
necessary input data) and sharing it with co-workers. In the UNICORE Rich Client, job
input files should be put into a directory called ‘input files’ inside the project. Relative
paths can then be interpreted relative to this directory, which makes sharing of projects
very easy.

Apart from the data that are relevant to the user, the workspace also contains metadata that
are used in order to manage user preferences and store the state of the Eclipse workbench. In
the Eclipse framework, there are different views for displaying the content of the workspace.
The most widely used view is called the Navigator view. It represents the workspace as a file
tree and is very similar to most graphical file browsers. It can be used for creating, renaming,
copying, and deleting projects, files and directories. Projects can also be ‘closed’ if unneeded.
This will hide their content from the Navigator view.

3.2.4 Editors

When a file is supposed to be opened (e.g. after double clicking it in the Navigator view, Eclipse
tries to identify a suitable editor by looking at the file’s extension. If an associated editor can
be found, it is invoked and will display the file content. For example, ‘.txt’ files invoke a text
editor, the ‘.flow’ extension invokes the workflow editor 4 . File types can also cause associated
external applications to be started; for example, a web browser for ‘.html’ files. If the filetype
is not supported, an error message is displayed. Associations between file types and editors are
defined in the preference page that can be reached via Window → Preferences → General →
Editors → File Associations.

UNICORE Rich Client user manual 8

3.2.5 Context menus

Many functions in the client are available via context menus 5 . In order to open a context
menu, right click an object or a view. The items available in the context menu are different,
depending on the object on which the context menu was opened.

3.2.6 Perspectives

The outer appearance of the workbench is very flexible and can change a lot over time. The
user benefits from being able to hide information he does not want to see at the moment and
arrange the remaining components in a way that fits his needs best. However, less experienced
users may have to search for information they accidentally hid in the first place. In order to
deal with this problem, the Eclipse framework has introduced the notion of perspectives. A
perspective is a well defined arrangement of views and editors in the workbench. In addition to
determining which components are visible in which spots, it can also influence the actions that
can be performed from the tool bar of the workbench. A given arrangement can be saved as a
perspective for later re-use and a user can always restore the original appearance of a perspective
by resetting the perspective.

3.3 Basic security configuration

3.3.1 How does encryption with X.509 certificates work?

Most security mechanisms on a UNICORE Grid are based on X.509 certificates. For each X.509
certificate, there is a pair of cryptographic keys, that fit each other. These keys can be used to
encrypt and decrypt messages: whatever has been encrypted with one of the keys can only be
decrypted with the other key - but the keys are not equal. This is why this type of encryption is
called ‘asymmetric’. Such an asymmetric pair of keys can be used in a public key infrastructure
(PKI): The trick is that one of the two keys, called the ‘public’ key is published and therefore
open to everyone, whereas the other key - called the ‘private’ key - is kept secret by the owner
of the key pair. In order to be able to keep the private key secret, it must be very difficult to
reconstruct or guess the private key by looking at the public key.

Everyone can use the public key to encrypt messages that only the owner of the private key can
read. And, equally important, the owner of the private key can prove that he owns the private
key by encrypting a meaningful message with it: everyone can use the public key to decrypt the
message and make sure that it is meaningful, but only the owner of the private key can produce
the encrypted message. Asymmetric encryption can also be used for digitally signing docu-
ments. With a digital signature, a person can prove that he really is the author of a document,
or that he approves the content of a document. The most common way of creating digital sig-
natures comprises two steps: first, a checksum for the document to be signed is computed. The
checksum is a relatively short sequence of characters (compared to the document). It is com-
puted by applying a well-known checksum function that always generates the same checksum
as long as the content of the document is unchanged. Second, the checksum is encrypted with

UNICORE Rich Client user manual 9

a private key. The encrypted checksum is published together with the document and forms the
digital signature. A reader of the document can use it for checking whether the document was
changed. To this end, he applies the same checksum function to the document and compares
the result to the checksum that he obtains by decrypting the digital signature (using the public
key).

In order to obtain an X.509 certificate from a key pair, the public key is stored in a document,
together with some information about the certificate’s owner-to-be (e.g. name, email address,
organisation). This document is then digitally signed with the private key of a certificate au-
thority (CA), which means that the CA approves the creation of the certificate. This process
is called ‘issuing a certificate’. Everyone can use the CA’s public key to check, whether the
certificate has been signed by the CA.

3.3.2 How does UNICORE use X.509 certificates?

With X.509 certificates, UNICORE ensures two things: First, each client or server on the Grid
can attest that he is who he claims to be. He does so by presenting his certificate - which
contains the public key - and providing evidence that he knows the private key belonging to this
public key (by encrypting a previously defined message). Since private keys are kept secret,
he must be the owner of the certificate. Second, the public key is used to encrypt messages
that only the person knowing the private key (the owner of the certificate) can read. This way
an encrypted communication channel between different actors on the Grid is established (by
secretly sending a newly created key that can be used for both encryption and decryption of
additional messages). The protocol defining the details of establishing the encrypted channel is
called Transport Layer Security (TLS), a successor of the Secure Sockets Layer (SSL).

3.3.3 What does this mean to the user?

Before accessing a UNICORE based Grid, each user needs to obtain a valid X.509 certificate
which is issued by one of the certificate authorities (CAs) that the UNICORE servers trust. The
client presents this certificate to the server whenever he is asked for authentication. The server
then checks whether it trusts the CA that issued the certificate. It does so by searching for the
CA’s certificate in a so-called ‘truststore’ i.e. a file that contains a list of trusted CAs’ certificates.
If the CA’s certificate is found, it knows it can trust the client. Analogously, the client checks
whether it trusts the server. If both checks are successful, a communication channel is created.

All private keys for certificates that the user may want to use on the Grid are stored in a special
file called ‘keystore’. The keystore is encrypted and secured by a passphrase that the user has
to remember. During first startup, the Rich Client can create a new keystore file. It is also
possible to reuse an existing keystore file. The list of trusted CAs is managed separately: users
can use a keystore file, a simple directory containing files in PEM encoding, or a trust directory
in OpenSSL format for this purpose.

UNICORE Rich Client user manual 10

3.3.4 The Truststore view

Use this view to add certificates of trusted certificate authorities (CAs) to the truststore (see
Figure 6). This is necessary in order to communicate securely with Grid services via an SSL
encrypted channel. Failing to add the required certificates for the Grid infrastructure that you
would like to use will result in errors when trying to contact any of the Grid services.

For each CA certificate contained in your truststore, the truststore view displays the alias iden-
tifying the certificate (must be unique), the name of the CA, and the end of the certificate’s
validity period. Please note that the current rich client version uses strict security rules and
forbids the use of duplicate certificates. Therefore if you use an existing keystore from older
versions, you have to remove the duplicate certificates.

In order to add trusted CA certificates, import a file containing these certificates (the file exten-
sion should be one of ‘.jks’, ‘.p12’, or ‘.pem’) 1 . Certificates can also be removed from the
truststore 2 . Additional actions allow for opening a detailed certificate description, changing a
certificate’s alias (used aliases must be unique) exporting public keys to ‘.pem’ files and setting
the keystore password 3 .

Figure 6: The Truststore view

UNICORE Rich Client user manual 11

3.3.5 The Keystore view

Figure 7: The Keystore view

This view is used to manage private keys and the associated X.509 user certificates (Figure 7).
Different actions may be performed via the view’s context menu 1 . The first item is used to
import all private and public keys from an existing keystore file into the client’s keystore. The
second item can permanently delete private keys from the client’s keystore. Additional items
allow for displaying more details about a selected key, changing the alias that identifies the
selected private key, exporting the certificate that belongs to the selected private key, exporting a
number of private and public keys to an external keystore file and modifying the client keystore’s
passphrase. In order to obtain a valid certificate from an existing CA, a certificate request can
be created. For each request, a pair of private and public keys is generated. The private key
is saved in the keystore. The certificate request must be sent to the administrator(s) of a CA.
The response to such a request is usually a ‘.pem’ file, containing the certificate, now signed by
the CA. By importing this file into the keystore (using the last item in the context menu), the
private key associated to the certificate becomes functional. If the keystore contains multiple
user certificates, a default certificate for accessing Grid services should be set 2 . This default
certificate can later be overridden by the Security Profiles view (see Section 6.2.1).

UNICORE Rich Client user manual 12

3.4 Browsing and monitoring the Grid

3.4.1 The Grid Browser view

This view represents the Grid as a tree structure (see Figure 8, top left). The items that form the
tree are called ‘nodes’ and represent Grid services and files.

Figure 8: The Grid Browser and Details views

There are numerous actions that can be performed on this view or its nodes:

1. Adding registries: For getting started, open the context menu (by right-clicking inside the
Grid Browser) and select add Registry 1 . In the appearing dialogue, enter the URL of
a registry that serves as an entry point to the Grid: A registry is used for looking up all
available services. For each added registry, a new node should appear just below the root
node called Grid 2 .

Starting with version 7.1.0 of URC, you can optionally add a fallback URL for a second registry.
Some infrastructures offer more than one registry, such that one of these central points of entry
is always available to the users. It is also possible to edit or add this fallback registry later by
selecting Edit Address from the dropdown menu.

UNICORE Rich Client user manual 13

1. Refreshing nodes: By double-clicking a node, the represented Grid service is contacted
and information about its state is gathered. This is called a refresh. After refreshing the
registry, a new sub tree should open, displaying the target system and workflow services
known by the registry 3 . Target system services are used for job execution, workflow
services are used for workflow execution.

2. Opening the context menu on a selected node: By right-clicking a node, a context menu
that contains all available actions for the associated service will appear. For instance,
users can create job descriptions for job submission to a target system by selecting the
create job action from the target system’s context menu 4 .

3. Filtering of Grid services: In large Grids, keeping an overview of the available services
and finding relevant information might become difficult. In order to support the user with
these tasks, configurable filters can be applied to the Grid Browser. Nodes that do not
pass the set of active filters, will not be displayed to the user. The default filter shows
job or workflow execution services and storages only. Services that are less frequently
used can be revealed by using the show menu to the top of the Grid Browser view 5 and
selecting All services. Additional filters allow to search for services of a specific type,
display jobs and workflows that yield a particular state, or have been submitted within
a given period of time. A file search filter can be used to retrieve all files that match a
certain file name pattern.

4. Administrative actions: The Grid Browser offers additional actions like creating and de-
stroying Grid service instances. These can be made accessible by increasing the detail
level of the Grid Browser. To this end, select Window → Preferences from the menu bar.
A new window will pop up, that can be used for specifying all sorts of preference settings
(see Figure 30). User preferences are discussed in more depth in Section 6.4. Grid spe-
cific settings can be made in the UNICORE category and its sub-categories. By setting
the User Expertise Level to expert, the additional administrative actions become available
(see Figure 31).

Although the Grid Browser displays the Grid as a tree, the actual topology of the Grid can only
be modelled with a graph. The Grid Browser deals with this situation by depicting a single Grid
service with multiple nodes. For instance, a job that is part of a workflow will be represented by
two different nodes in the Grid Browser: one beneath the target system service that executed the
job and the other one beneath the workflow management service that corresponds to the job’s
parent workflow. These two nodes, however, share the same data model: whenever you refresh
one of the nodes, the other one is being refreshed at the same time.

3.4.2 Grid Files

Remote files in UNICORE based Grids are accessible through UNICORE storages that can be
searched directly in the Grid Browser. Directories and files are displayed as child nodes of the
storage node. Double-clicking a directory will open it and list contained files and folders, while
double-clicking a file will download that file to the local hard disk and open its content in an
associated editor. Saving the file with the associated editor will also update the remote file’s

UNICORE Rich Client user manual 14

content (except when the file is opened with an external editor). Data can be moved between
different remote file systems. For instance, you can move a directory from one UNICORE
storage to another with a single mouse drag. Files can also be uploaded to remote storages by
dragging them from the workspace, a local file browser or the desktop. Due to a limitation of
the Eclipse framework, files can only be downloaded to the workspace (via the Navigator view).
The display of hidden files, i.e. their names starting with a dot, can be controlled via the filter
drop-down menu labeled "Show" at the top of the Grid Browser.

UNICORE provides several "entry points" for storages. First of all, there are static storages
associated with each site, such as the users’s home directory or additional locations specific to
the site. Another "entry point" for storages are storage factories from which a user can create
dynamic storages. Storage factories can support one or several types of storages, allowing a
user to make supported storage types available as UNICORE storages and use them in jobs or
workflows. In order to create a new storage from a factory, right click on the factory and select
Create File Storage. . . from the context menu. You will be prompted for details of the storage
you intend to create (cf. Figure 9). The actual properties depend on the storage type, you will
always be prompted for "Storage name".

Figure 9: Creating a storage from a storage factory

UNICORE Rich Client user manual 15

3.4.3 The Details view

When a node in the Grid Browser has been refreshed for the first time, information about the
associated service is shown in the Details view 6 . For target system services, this includes
available resources like number of CPUs, amount of main memory, and a list of installed ap-
plications. For jobs and workflows, states and submission times are displayed, for Grid files,
sizes and modification dates. Note, that this view is connected to the Grid Browser: Whenever
a different node is selected, the Details view is being updated to display its details.

File and memory sizes default to IEC units, i.e. units with a base of 1024 rather than 1000
per order of magnitude. In order to change this, you can enable SI units in the Grid Browser
preferences under Window → Preferences → UNICORE → Grid Browser.

3.5 Job submission and visualisation of job outcomes

3.5.1 The Job editor

The UNICORE Rich Client offers graphical editors for setting up job descriptions. Instead
of having to edit text-based job descriptions, the user is provided high level interfaces which
are taylored to the applications he wants to execute on remote systems. The client is easily
extensible with new application specific user interfaces as new applications are introduced to
the Grid environment. Setting up a job description only requires a few simple steps and can be
performed within a couple of seconds. The first step is the creation of a job project.

3.5.2 Creating a job project

There are different ways to create a new job project:

1. Select File → New → Job Project from the menu bar (see 1 in Figure 10).

2. Open the context menu of the Navigator view and select New → Job Project.

3. Use the create job item from the context menu of a target system node.

4. Choose the restore Job description item from a job’s context menu in the Grid Browser.

UNICORE Rich Client user manual 16

Figure 10: Creating a job or workflow project

The first three of these options will pop up a series of wizard dialogs which will guide the user
through the creation of the job project (see Figure 11).

UNICORE Rich Client user manual 17

Figure 11: Wizard for creating a job project

The first step of the wizard is used to choose an application to be run on the target system.
In our example, we would like to execute a simple shell script. Therefore, we have selected
the Script application 1 . By pressing the Finish button the new job project is created. Click
Next which will take you to the next wizard step. Here, a different name for the project 2 and
the job file 3 can be set. The third wizard page allows for selecting a different target system
for job submission 4 . The selected target system can also be modified after the project has
been created. When the job is created with the last option, both the target system selection and
application to be run are restored from the server. Therefore, the job creation wizard shows the

UNICORE Rich Client user manual 18

second wizard page, only (where you can set names for the project and job file).

3.5.3 Editing mode

The most convenient way to create a job project is using the context menu of a target system
node (see 1 in Figure 12), as the corresponding target system will be pre-selected and the job
creation wizard can be completed on the first page.

Figure 12: Job editing and submission

Once the job project and job file have been created, a new job editor will be opened in editing
mode, displaying a graphical user interface (GUI) for the application 2 . It allows for defining
the input parameters of the job to be run. The GUI for the Script application provides an
embedded text editor for typing in the shell script 3 . New application GUIs can be installed
by selecting Help → Software Updates → Download Grid Applications from the workbench’s
menu bar. This option requires an application GUI server to be available on the Grid (if no
server has been found, the option is not available). The job editor holds several tabs. First the
application specific tabs are shown for setting parameters in a user friendly way.

In addition, the editor holds three generic panels:

UNICORE Rich Client user manual 19

• The Files panel 4 : This panel can be used to define file imports from remote locations or
preceding activities in a workflow. The application specific panels usually only allow for
defining imports from the local file system. File exports to remote locations can also be set
up here. Furthermore, user can explicitly specify whether the imported / exported files should
be deleted after job termination.

• The Variables panel 5 : This panel can be used to set the application’s input parameters di-
rectly (circumventing the application specific panels that usually operate on these parameters,
too. All parameters are passed to the application via environment variables. Furthermore, the
panel allows for setting up additional environment variables for your application run.

• The Resources panel 6 : This panel can be used for specifying resource requirements of the
job, like the number of CPUs needed for a calculation or the amount of memory. Furthermore,
scheduled start time of jobs can be specified (i.e. set the time when job is submitted to the
batch system). If user requires to run an application that uses a different execution mode (e.g.
parallel execution), the option execution environment can be activated. For more information
please read http://sourceforge.net/p/unicore/wiki/ExecutionEnvironment/. The tree-like view
on the Grid to the right serves for changing the selected target system for job execution. Note
that the list of suitable target systems is updated when changing resource requirements. Also
note that the boundaries for resource requirements change when a different target system is
selected. The selection can be undone by choosing a node that is not a computational resource
(e.g. the Grid node or a registry node).

As of version 7.1.0, Groovy expressions can be used in place of numerical values. The expres-
sion has the form ${expression} and will be evaluated in the UNICORE/X considering
the job’s context. The context is comprised of the jobs’s variables. Thus, if you need to pass
variables from the workflow level into the job, you will need to define a job variable that is fed
from the workflow variabe and consequently evaluated in the resource expression. Be aware
that brokering will not be possible when using this feature, so the selection of a specific site for
the job is required.

When all parameters are set, click the green submit button (see 7 in Figure 12) to submit the
job to the selected target system.

An additional action in the tool bar of the job editor is used to set the job’s lifetime 8 . When
the job has reached the end of its lifetime, the job resource representing the submitted job is
destroyed and its working directory is cleaned up automatically. This implies that the job’s
outcomes cannot be accessed hereafter. The default lifetime for jobs is set to 720 hours (30
days).

3.5.4 Monitoring Mode

As soon as a job is being submitted, the job file is copied into a newly created subfolder of the
‘submitted’ folder in the job project. The subfolder’s name consists of the String ‘submitted at’,
followed by a timestamp, e.g. ‘2010-03-29 16-00-34’ that indicates when the job was submitted
(1 in Figure 13). This way, a history of all submitted versions of the job is kept and the user

http://sourceforge.net/p/unicore/wiki/ExecutionEnvironment/

UNICORE Rich Client user manual 20

can later look up old job descriptions and compare the results of the associated job executions.
The copied version of the job file is then opened in a new job editor.

Figure 13: Job monitoring and fetching job outcomes

In order to inform the user about the execution state of the job, the editor is put into monitor-
ing mode. This means that the job description cannot be edited anymore and the title of the
job editor indicates the current execution status 2 . The status may be one of the four values
submitting, running, finished, and failed. If the job editor is closed in state submitting the job
submission cannot be performed successfully and the subfolder with the copy of the job file is
deleted automatically. If the editor is closed in state’running’, execution of the job will continue
normally on the server side. By double-clicking the job file copy in the Navigator view, the job
editor will be re-opened in monitoring mode and continue to watch the job execution. Jobs can
be aborted by selecting the ‘abort’ item in their context menu. Aborting a job will interrupt the
execution of the associated application as soon as possible (this depends on the target system’s
ability to abort application runs), but leave the job node (and its working directory node) acces-
sible in the Grid Browser. In contrast, destroying a job will first abort the job and then clean up
all used resources including the job’s working directory.

UNICORE Rich Client user manual 21

3.5.5 Fetching Job Outcomes

Once the job has finished successfully, the fetch output files action becomes available in the tool
bar of the job editor in monitoring mode 3 . After clicking it, a dialog will appear that shows
all produced output files and allows you to deselect files you do not want to download. After
clicking OK the selected files are downloaded to the ‘output files’ directory in the subfolder
that contains the copy of the submitted job 4 . Finally, a new application specific Job Outcome
view will appear showing the contents of the job’s output files 5 . In our example a simple
text editor shows the output of the script, but more advanced visualisation software is used for
displaying the results of scientific applications (e.g. 3D molecule visualisations for chemical
applications). Alternatively, job outcomes can be fetched by selecting fetch output files from
the context menu of job nodes in the Grid Browser view 6 .

3.5.6 Restarting a Job

After completion of a job, user can restart it by selecting Restart from the context menu of
the corresponding job node in the Grid Browser view. This feature is quite handy when a user
wants to restart the finished job. Please note that data staging is not re-executed, the job is
simply resubmitted to the batch subsystem using the files in the job directory. The job’s output
and error files will be overwritten.

3.5.7 Generic application

The Generic application automatically builds application specific graphical user interfaces (GUI)
based on metadata configured on the UNICORE server. The GUI allows a user to select an ap-
plication, to insert command line arguments and to choose application parameters.

UNICORE Rich Client user manual 22

Figure 14: GUI of the Generic application

Further information on how to define the required metadata for applications can be found in the
UNICORE/X manual.

UNICORE Rich Client user manual 23

3.6 The Workflow editor

This software component provides a graphical editing tool for workflows, offering features like
copy & paste, undoing changes, performing automatic graph layouts, zooming, and printing of
diagrams. Each workflow is created in its own project and can be submitted and monitored like
a single job.

3.6.1 Creating a workflow project

In order to create a new workflow project, either select File → New → Workflow Project from
the workbench’s menu bar or select New → Workflow Project from the context menu of the
Navigator view (see Figure 10). After providing a valid name for both the parent folder and the
workflow file, the project is created.

3.6.2 Editing mode

When creating a new workflow project or opening an existing workflow file, a new workflow
editor instance is opened for setting up the workflow description (see Figure 15).

Figure 15: The workflow editor: editing mode

UNICORE Rich Client user manual 24

Workflow descriptions are graphs consisting of nodes (commonly called activities in workflow
terminology) and edges (called transitions). When a workflow diagram is created, it only dis-
plays a single activity: the starting activity of the workflow 1 . Execution of the workflow
begins at this activity. In order to add new elements to the workflow, select them from the
palette on the left hand side and click in the diagram where you want to place them. Currently,
the palette offers the following elements that can be added to the workflow:

1. Application activities
These activities represent jobs that are submitted to target systems during workflow exe-
cution in order to run specific applications there. For each application GUI that is installed
in the client platform, the palette shows a small icon and the name of the application 2 .
By selecting an icon and left-clicking a free spot within the workflow editor, a new activ-
ity for the associated application will be created. This leads to the creation of a job file in
the ‘jobs’ directory of the workflow project as soon as the workflow is saved. When being
double-clicked, application activities will open the job editor for the associated job file.
The editor can be used in order to change the job description. When a job is embedded in
a workflow, there are a several additional possiblities for specifying the job’s inputs and
outputs that are not available for single jobs:

• Additions to the Files panel: A File can now be exported as a Workflow file meaning
that the file will be stored on some global storage and will be available to subsequent
workflow activities.

• Additions to the Variables panel: This panel can be used to set the application’s input
parameters to the values of workflow variables. Workflow variables can be declared
by special activities and modified while the workflow is executed. Their current value
during workflow execution is maintained by the workflow engine and may be fed into
a job’s description before the job is submitted. This mechanism allows for running the
same job multiple times, with different parameter values e.g. for performing parameter
sweeps.

• Additions to the Resources panel: Workflow jobs do not require users to select a single
target system for job execution. This is due to the fact that the workflow engine has
a resource broker which is capable of distributing jobs to suitable target systems. In
this process, specified resource requirements of the job (e.g. amount of memory) are
compared to the target systems’ offerings for finding a computing resource that fulfils
the requirements. This is generally referred to as ‘match-making’. In order to narrow
down the choice of target systems used for match-making, the user may select one or
more target systems as ‘candidate resources’ for the job. Again, the selection can be
undone by choosing a node that is not a computational resource (e.g. the Grid node or
a registry node).

• Additions to the Properties view: This view provides additional workflow related op-
tions. For instance, user can specify whether the workflow engine should ignore any
failure of the current task and continue processing as if activity had been completed suc-
cessfully. User can control how many times an activity should be retried. For complex
workflow jobs Splitting Options can be set. More precisely, user can define whether

UNICORE Rich Client user manual 25

an activity should be splitted into subjobs and provide a maximum number of such
subjobs.

2. Transitions
Transitions represent the flow of control that passes from one activity to the next. Cur-
rently, there are two types of transitions: unconditional 3 and conditional 5 ones. Only
unconditional transitions can be added to the workflow manually. Conditional transitions
are used in If-statements and While-loops and are added automatically. The reason for
this is that conditional transitions may require a different joining behaviour: the default
joining behaviour when an activity has multiple incoming transitions is called ‘synchro-
nisation’. This means that the activity is only processed when all incoming transitions
have been processed. As you might imagine, this behaviour is no longer appropriate
when conditional transitions are used: the activity that joins the if and else branches of
an If-statement would never be processed if it waited for both branches to finish. In or-
der to hide this complexity from users that are unfamiliar with workflow processing and
programming languages, If-statements and similar constructs will be modelled as sub-
workflows that automatically define the appropriate joining behaviour.

• In addition to the Control Flow view Data Flow view can also be selected to visualize
the input and output of created workflow jobs. You can check option Files 4 to have a
graphical view of the input and output files of the activities. Moreover the output of one
job can be used by other jobs by simply connecting (drag and drop) it to the respective
input files of other jobs. You can check various workflow variable types (Strings, Float
and Integer) to visualize the input parameters of the workflow jobs.

3. Workflow structures
Workflow structures are subgraphs that bring their own semantics on how to process their
child nodes. Currently, five workflow structures are provided: groups, If-statements,
Hold-activities, While-loops, and ForEach-Loops 6 .

a. Groups are the simplest of all subgraphs. They are just containers for other ac-
tivities. Their content may be hidden by clicking the small minus symbol at their
top.

b. If-statements influence the flow of control and contain two additional subgraphs
(which are modelled as groups): the if-branch and the else-branch. The if-branch
is processed when a certain user-defined condition holds. If the condition evaluates
to false the else-branch is processed instead. Both branches can contain arbitrary
activities and transitions, thus permitting nesting of workflow structures. Condi-
tions can be altered by double clicking the conditional transition. This will open up
the Properties view which displays relevant properties of workflow elements 7 .
Most properties can be modified through this view. There are currently four types
of conditions: the first type compares the exit status of an application to a value
provided by the user, the second one tests whether an output file with a given name
has been created by an application activity, the third one compares the value of a
workflow variable to a given value, and the last one checks whether the current time
lies before or after a given point in time.

UNICORE Rich Client user manual 26

c. The Hold-activity is very simple. After any workflow structure, a hold structure can
be placed to pause the workflow. When a workflow is submitted to the workflow
engine and hold operation gets executed, the workflow engine waits for user input
to continue. The paused workflow can be continued by right clicking on it in Grid
browser and selecting resume option. Workflow variables defined in the previous
jobs (until hold activity) will get listed in the resume dialog. In many cases users
need to change these parameters based on a previous job’s result and then continue
with the changed parameter values. This can be easily done by entering new values
in the resume dialog.

d. The While-loop provides a single subgraph called the loop-body that can be pro-
cessed multiple times (as long as the loop’s condition holds true). The While-loop
declares a workflow variable that reflects the current number of loop iterations, the
so-called loop ‘iterator’. It also declares a variable modifier that increments the loop
iterator. The variable declaration can be changed in the Properties view of the red
activity at the top of the loop and the variable modifier can be set up in the Proper-
ties view of the associated modifier activity (at the bottom of the while-loop). Please
note that in the properties view only the rename button is activated, as the other but-
tons add and remove do not make sense in case of a while-loop/repeat-until-loop.

e. The Repeat-Until-loop works just like the while loop, but its loop-body is always
processed once before the condition is evaluated for the first time. Also, compared
to the while-loop, the condition is negated, i.e. the loop ends when the condition
becomes true.

f. ForEach-loops can be used in order to create many similar jobs without having to
set up each job individually. They have four different modes of operation. The first
mode will iterate over a set of workflow variable values and run the job(s) contained
in the loop body once for each value in the set. The workflow variable values can
be used as input parameters for these jobs. Complex parameter sweeps are possible,
as multiple workflow variables can be sweeped at the same time. The second mode
is used to iterate over a set of files. The file set may consist of any combination of
local, remote or workflow files. This mode provides a convenient way to process
many different files simultaneously. The operational mode and the parameters to the
selected mode can be modified in the Properties view of the orange activity at the
top of the ForEach-loop. The iterations of the ForEach-loop are usually executed in
parallel. However, there is an upper bound of parallel iterations which results from
the workflow engine’s capabilities. There is also a way to lower this boundary by
providing an Integer value for the Number of parallel tasks in the Properties view
of the ForEach activity. Setting this value to ‘1’ will lead to sequential execution of
the loop iterations. In addition to this, user can specify an iteration size. It allows
to group a set of files in a single iteration. In the combo box, you can choose either
number of files per iteration or just give the size of the chunk (group) in Kbytes.
A variation of iterating over a set of files directly is to iterate over files referenced
within a source file. In doing so, users can generate lists of files in scripts that are
executed as part of ordinary jobs. Finally, as another mode of operation, ForEach-
loops can iterate over value sets directly entered by the user. Value sets can be
imported from files, where each line in the file is interpreted as a value of the set.

UNICORE Rich Client user manual 27

Each of the workflow structure elements contains a body. The If-statement contains two,
as there always is a branch for the else case. For each of these bodies, you can define
whether the jobs within it should be co-brokered, i.e. run on the same site. This can
be achieved by editing the advanced properties of the control structure’s body. There is
a property group called Brokering containing the COBROKER property. This boolean
property can be toggled by clicking on it.

4. Variable declarations and modifiers 8
Additional workflow variables can be declared using the appropriate Declaration activity.
The Properties view of this activity allows for (re-)naming the variable and assigning it a
type (e.g. String or Integer) and initial value. A Modifier activity can be used to change
the value of a workflow variable later.

When the user is pleased with the workflow description, the workflow can be submitted via
the editor’s context menu 9 or the workbench’s tool bar. It can also be exported to an XML
based workflow language that the workflow engine understands 10 . The exported workflow
can later be submitted to the workflow engine by the UNICORE commandline client. This
feature is useful e.g. in order to make predefined workflows available via a web interface (the
Chemomentum web portal solution uses the commandline client for workflow submission).

3.6.3 Dealing with large workflows

Advanced users will sooner or later get to the point where workflows will become more and
more complex and difficult to overlook. We have implemented several ways to aid in such
situations. First of all, it is possible to zoom in and out of the workflow editor. To this end, you
can either use the scroll wheel of your mouse while pressing the Ctrl key or select a zoom factor
from the zoom combo box in the tool bar. The combo box also offers convenient entries to fit
the entire workflow diagram to the display as a whole or by page width or height.

UNICORE Rich Client user manual 28

Figure 16: Outline view of the workflow editor

Additionally, users can activate an outline view via Window → Show View → Other → General
→ Outline (see Figure 16). The view is always linked to the currently selected editor and
displays a rectangle representing the currently visible portions of the diagram. You can navigate
the workflow editor by dragging this rectangle to the desired position.

3.6.4 Monitoring mode

The workflow editor is also used for monitoring the execution of workflows, so the basic graph-
ical representation of a workflow stays the same before and after submission to the workflow
engine (see Figure 17). This helps in identifying which part of the workflow is being executed
at a given point in time.

UNICORE Rich Client user manual 29

Figure 17: The workflow editor: monitoring mode and the Trace Graph view

When a workflow has been submitted, a new folder is created in the ‘submitted’ subfolder of the
workflow project. This folder contains a copy of the workflow file that is automatically opened
in a new workflow editor panel - in monitoring mode. In this mode, the editor disallows any
changes to the workflow. It displays the progress of workflow execution by adding small icons
to the nodes of the workflow graph that symbolise the execution state of these parts 1 . When a
workflow job (a node of the workflow graph) is completed successfully a small green icon with
tick appears on this node. The job that is being processed is shown by a yellow play icon. If for
any reason a job gets failed a red icon appears on the node showing execution failure.

Outcomes of jobs can be fetched as soon as the jobs have finished. This function is available via
the context menu of application activities and the fetch output files action in the global tool bar
(after selecting the activity for which to fetch outcomes). Job outcomes are downloaded to the
‘output files’ folder again, so they can easily be found later and associated with the workflow
by which they were produced. Monitoring a workflow can be interrupted by simply closing
the editor panel 2 . By double-clicking the file that represents the submitted workflow (in the
Navigator view), the editor panel will be re-opened and continue to monitor the execution of
the workflow.

UNICORE Rich Client user manual 30

3.6.5 The Trace Graph view

In addition to monitoring the execution states of activities in the workflow, the user may trace
the workflow for finding out where his jobs were submitted. This action is available via the
context menu of the workflow editor. A trace graph will open, showing all messages that were
sent by the workflow system during the execution of the workflow 3 . By hovering the mouse
over a node or edge in the trace graph, additional information about the element is displayed in
a tooltip. The set of traced messages can be updated by clicking the Refresh button in the tool
bar of the Trace Graph view 4 . Additional buttons allow to zoom in and out (zooming can
also be achieved by rotating the mouse wheel while pressing the ‘control’ key).

3.7 Interactive site access

The UNICORE Rich Client features a Terminal view which can be used to log on to remote
hosts via SSH and GSISSH. It complies to the VT100 standard for terminal emulation and can
hold multiple terminal sessions (in multiple tabs). Sessions can be created via the open terminal
action from the context menu of a target system node. Please note, that this action is only
available, if the administrator of the UNICORE site has enabled interactive access and provided
necessary information about the target system, i.e. the host name and port that should be used
for establishing the interactive connection and the available connection methods. Currently,
the UNICORE Rich Client provides two different secure connection methods, Plain SSH and
GSISSH. Apart from that, additional protocols can be used in the future — both UNICORE
client and server are extensible in this regard.

3.7.1 Plain SSH

When connecting to an SSH server via plain (i.e. conventional) SSH, the user can choose
between three different authentication methods :

• Password

• Keyboard-Interactive

• Public-key: If the user’s private key path wasn’t specified before, the UNICORE Rich Client
tries to find the key in the appropriate default directory (e.g. ~/.ssh/id_dsa). If this fails
the user is prompted to specify the path. In case your private key format is not recognized
properly, please read Section 5.2.6.

3.7.2 GSISSH

Note
this feature is not available in the 7.0.0 release

UNICORE Rich Client user manual 31

The GSISSH connection method provides access to GSISSH servers via RFC-3820 compliant
proxy certificates. The proxy is created from the keystore of the UNICORE Client when the user
starts to connect to the server. It can be stored on the local machine if required. It is possible to
choose between different aliases representing different keys in the keystore, different delegation
types, and different proxy types. Furthermore, the lifetime of the proxy certificate can be set
(the default is 12 hours). When connecting to GSISSH servers the UNICORE Rich Client
converts the PEM formatted CA certificates in the UNICORE client’s truststore to GSISSH-
conform certificates, and stores them on the local machine. By default these files are created
in the ~/.globus/certificates folder. However, this can be changed in the client’s preferences at
UNICORE → Terminal→ GSISSH.

3.7.3 How to open a terminal

There are different ways to open a terminal shell for a target site. The most convenient method
is to right click a UNICORE target site in the Grid Browser view and select the Open Terminal
menu item (see 1 in Figure 18).

Figure 18: Opening and using terminal connections.

If the user connects to a site for the first time, he will be prompted to choose one of the available

UNICORE Rich Client user manual 32

connection methods, in case the administrator of the UNICORE site has provided the necessary
information in the IDB. If no connection information is provided, the user can enter the host-
name, port, and login name manually. When all required connection data has been gathered, the
secure connection process is triggered and the terminal view should show up automatically (see
2 in Figure 18). Alternatively, the user can open terminal shells by using the Terminal Config

view.

3.7.4 How to maintain and configure connection information

A second view, the so-called Terminal Connection Config view (see 3 in Figure 18), can be
used for modifying the user’s settings for interactive access to different target systems. The
Terminal Config View can be invoked by selecting the configure terminal connection menu
item (see 4 in Figure 18) from the context menu of a target site in the Grid Browser.

The view provides a table with all SSH target sites that have previously been invoked by the
user. The user can rename the target site, or set a default connection type in the table. To
edit the site’s terminal configuration the Config column or the Edit-button in the top menu can
be clicked. This action will open a dialog for editing the parameters of different connection
methods. The values are stored permanently in the UNICORE client after clicking Ok.

Custom target sites can be created by clicking the New button in the top menu. Terminals to
such sites can only be opened from the Terminal Config view. They can be recognised by the
CustomTargetSite tag in the Site Type column.

4 Advanced Usage Scenarios

4.1 File sets and file names with wildcards

When staging in files from UNICORE storages, iterating over filesets with a ForEach-Loop or
transferring files between workflow tasks, the asterisk (*) wildcard can be used for matching
multiple files in a specific folder. For instance, in the Files panel of the job editor, specifying
an export with the value *.png in the File(s) in Job Directory column tells the client to stage
out all files with the ".png" extension. In general, an * matches any sequence of characters in
file names. Wildcards can also be used to complete directory names, so the pattern output
_dir*/std* would tell the client to stage out all files starting with std that are located in
sub-directories of the job working dir starting with output_dir. As you can imagine, this is
very valuable when dealing with large file sets.

However, the introduction of this mechanism poses one challenge: how can the user specify how
multiple matched files should be named in the job working directory when being imported?
Imagine there are two jobs within a workflow, job1 (maybe a rendering application) exports
a set of files using the pattern *.png, whereas job2 (an application that can merge multiple
.png files into a video) imports all these files from the first job. By default, when importing
wildcarded files from job1, the client just uses the original pattern (in this case *.png) as a file

UNICORE Rich Client user manual 33

name pattern for the import declaration inside job2. This means that the transferred files should
retain their original names (as in the working directory of job1).

Now, since version 6.4.3, the UNICORE Rich Client allows you to modify the wildcarded file
name pattern for file imports. A common reason for this would be that the application executed
by job2 expects the files to be named following a particular pattern. Let’s assume that this
application identifies incoming .png files by the prefix input, i.e. it looks for all files in
the job working dir starting with input and processes them. In this case, you can force the
imported files to start with the prefix input by changing the default file name pattern for the
import from *.png to input*.png. This leads to simply prepending input to the original
file names.

At this point, it is important to understand that the UNICORE workflow engine identifies the
wildcards (*) in both export patterns (*.png as defined by job1) and import patterns (inp
ut*.png) and tries to align them. As a result, it will replace a wildcard in the import pattern
with those parts of the file names that have matched the corresponding wildcard in the export
pattern of a previous job. We will come back to this later.

Let’s assume for a moment, that the files produced by job1 are called output01.png, . . . ,
output99.png. With the patterns above, this would lead to the files being called input
output01.png, . . . , inputoutput99.png, which looks ugly (although functionally it
probably doesn’t make a difference). If you would like to change this, you should change the
export pattern of job1 to output*.png. This leads to a situation where the workflow engine
only matches the continuous numbers (01-99) against the wildcard in the export pattern. Thus,
after aligning export and import pattern, it would rename the files to input01.png, . . . ,
input99.png inside the working directory of job2.

But what happens if job1 produces a whole structure of numbered (or otherwise unique) direc-
tories and output files and you would like to import that structure into job2 (and maybe change
some of the directory names, or merge parts of the directory structure)? Fear not as this is
supported as well!

For this to work, you can use one of the following two approaches:

1. Export and Import patterns have matching wildcard positions

2. Import patterns use group variables ${1}, . . . , ${n} representing matched wildcards in
the export patterns

An example for the first approach would be the pattern outputs/iteration*/doc* for
declaring the exports of job1 and the pattern inputfolder/input* for declaring the im-
ports of job2. Let’s assume that job1 produces folders named outputs/iteration_a, . . . ,
outputs/iteration_z, each of which containing two files named doc.pdf and doc.
ps. The UNICORE workflow engine would try to align these patterns in a way that it under-
stands which asterisk in the import pattern matches which asterisk in the output pattern. In order
to do this, it compares the patterns to each other, starting with the LAST path segment (i.e. the
file name), making its way to the beginning of the patterns segment after segment.

That means that it compares the file names (doc* and input*) first and notices, that both
contain a wildcard, so it assumes that the characters represented by these wildcards should

UNICORE Rich Client user manual 34

be the same. Thus, the two imported files will be named input.pdf and input.ps for
each iteration. It then continues to compare the next segments of the patterns, in this case
iteration* and inputfolder. Since inputfolder does NOT contain a wildcard,
all imported files will be merged into a single folder. If the segment read inputfolder*
instead, the original directory structure would be retained, but the directories would be named
differently, i.e. inputfolder_a, . . . , inputfolder_z. Note, that comparison of the
two patterns stops, as soon as one of the two patterns ends, which allows for cutting off or
prepending parent dirs.

While this first approach is already quite flexible, it doesn’t cover all possible use cases. In
order to handle even more demanding situations, the second approach was introduced. Let’s
stick to our previous example, but assume that files have to be put directly in the job working
directory and should be named doc_a.pdf, doc_a.ps, . . . , doc_z.pdf, doc_z.ps.

How can you achieve this with the first approach? You can’t! Instead, you would provide
an import pattern with group variables, in this case doc${1}${2}. The workflow engine
would recognize the variables and replace all occurences of ${1} with the characters that were
matched by the first wildcard in the export pattern and all occurences of ${2} with the charac-
ters that were matched by the second wildcard. You can easily imagine that this allows for lot
of flexibility in terms of renaming/restructoring imported directories and files.

4.2 Metadata Management Functions

The UNICORE Rich Client provides a user interface to access the metadata management ser-
vice. Each UNICORE storage has its own metadata management service, which maybe enabled
or disabled.

UNICORE Rich Client user manual 35

Figure 19: Metadata Management Menu

By default, the metadata service is not enabled in the UNICORE/X server. Please read the UNI-
CORE/X manual for more information on the activation of this service: https://www.unicore.eu/-
docstore/unicorex-7.5.0/unicorex-manual.html#ux_metadata. Should this feature not be en-
abled in your UNICORE server installation, then please ask your server administrator for assis-
tance.

4.2.1 Metadata Extraction

With the metadata support enabled, the UNICORE/X is capable of automatically extracting
metadata from a large number of file formats. The automatic extraction can be triggered from
the URC by selecting a storage or directory. The dialog that is displayed upon selecting Extract
Metadata asks for the depth to which the automatic extraction should be done in the directory
hierarchy (cf. Extract Metadata).

Extract Metadata

https://www.unicore.eu/docstore/unicorex-7.5.0/unicorex-manual.html#ux_metadata
https://www.unicore.eu/docstore/unicorex-7.5.0/unicorex-manual.html#ux_metadata

UNICORE Rich Client user manual 36

Once you’ve confirmed the recursion depth, the extraction will start and metadata will be as-
sociated with all files. The duration of the extraction process depends on the number of files
residing in the storage.

4.2.2 Metadata View

A simple way of using metadata in the URC is to open the metadata view from the context menu
of the Grid Browser (cf. [?]). The entry for viewing metadata is only available when a single
file is selected. Initially, the metadata view will be presented in the right hand area of the URC
window. You can move it to a position of your convenience or detach it as a separate window.
The view is also used to edit metadata.

UNICORE Rich Client user manual 37

Figure 20: Metadata View

The metadata view should be quite intuitive to use. Whenever a file is selected that has metadata
associated with it, the metadata is displayed in the metadata view. Metadata in UNICORE is
organized as a flat set of keys and values, where a key can only appear once.

The viewer has one of two states. It can be clean or dirty, depending on whether any keys
or values were modified. A clean view represents the metadata as it is on the server side. A
dirty view represents local changes that need to be saved in order to update the metadata on the
server side. The dirty view is written through the global Save or Save All commands. You can
usually press Ctrl+S with the view selected in order to write the metadata. A dirty buffer can be
discarded by refreshing the metadata from the server side. This is done by clicking the refresh
button in the editor (cf. 2 in Figure 20). When selecting another file in the Grid Browser, the
viewer will retrieve its metadata. However, if the editor was in a dirty state before selecting the
new file, you will be asked whether you would like to save or discard your edits.

UNICORE Rich Client user manual 38

The filter field (1) helps in finding metadata entries if there are a lot of them. Just enter a
portion of a key or value and the table will only display entries with matching keys or values.
The search is case insensitive. Press the broom symbol or the escape key to clear the filter again
and display all entries.

In order to add a new metadata key, you can press the + sign (3). The new entry has a key
named "NewKey" with a value of "NewValue". You can search for it if you have a large number
of entries. Selected rows of metadata entries can be deleted by pressing the - sign (4). Multiple
rows can be selected as usual by Ctrl-clicking individual rows or Shift-clicking regions.

In order to edit any of the keys of values, double-click into the respective table cell and start
editing. You can confirm your edit by pressing return or selecting another cell or row in the
table. The edit can be cancelled by pressing the escape key. If the editor was flagged as clean
before the edit, i.e. no edits had been made, then cancelling it will leave the editor in a clean
state. Any modifications to either keys or values will mark the view as dirty. This is indicated
by the asterisk preceding the title of the viewer (5).

4.2.3 Metadata Search

The metadata search view can be opened from the Grid Browser’s context menu (cf. Figure 19).

UNICORE Rich Client user manual 39

Figure 21: Metadata Search

In order to search metadata, you need to select a storage service first (cf. 1 in Figure 21).
Currently, all storage services are listed, even those without the metadata service enabled. Thus,
you’ll need to know from which ones you can expect metadata. Multiple selections are possible,
the client will then query all available and selected services to produce the result.

The metadata management service will be queried when you press the Search button (cf. 2).
Pressing the Reset button (3) will reset the search form, i.e. empty all query fields.

We have decided to display the filtered results in the hierarchy of the Grid Browser. A flat list
would also have been possible. This would however leave the user uninformed about where
exactly the files were found. The results can be used by copying them into a storage. This is
achieved by dragging and dropping them accordingly.

Naturally, both metadata views can be opened from the Window → Show View → Other. . .
menu, as is common in most Eclipse applications. Within the Show View dialog, they are

UNICORE Rich Client user manual 40

located in the UNICORE category.

5 Troubleshooting

5.1 Event Dialogs and the Client Log

Using the software, errors or other noteworthy events may occur. The UNICORE client offers
an elaborate mechanism for logging events as well as identifying and fixing runtime errors.
Occuring events have a severity level that can be any of Error, Warning, or Info. By default,
errors and warnings lead to opening an event dialog providing a brief problem description (see
1 in Figure 22), whereas events with the Info severity level are just logged to a file silently.

When the cause of the problem has been clearly identified, the event dialog may also offer a
list of available solutions for the problem. There are two different types of solutions: plain
text explanations helping the user in understanding and fixing the problem himself and dynamic
links that trigger certain actions to fix the problem automatically. In case a problem was clearly
caused by an error in the client’s program code, the software helps the user to fill in a problem
report and send it to the unicore-problem-reports@lists.sourceforge.net mailing list. When en-
countering additional errors that look like bugs, feel free to compose a mail to this mailing list,
too. This will help us improve the sofware quality. Please remember to attach the stack trace
that can be viewed when clicking the Details button inside the event dialog. Additional controls
in the dialog let the user choose whether to pop up the event dialog in case additional problems
with the same cause arise. This only works when a problem’s cause has been identified. All
events are written to a log file, enabling the client to list them in the Client Log view (see 2).
The event list can be sorted according to the event message or the timestamp that is attached to
each event.

Events can be viewed by double clicking them inside the list. This will open the event dialog
once again for displaying the selected event. The Back and Next buttons can be used to navigate
through the event list. The Client Log view can also be used to configure event logging and
the event dialog’s pop-up behaviour. To this end, open its pull-down menu and select the Filter
item (see 3).

mailto:unicore-problem-reports@lists.sourceforge.net

UNICORE Rich Client user manual 41

Figure 22: Event dialogs and client log

5.2 Common Problems

5.2.1 Frequent connection timeouts and other network related problems

The UNICORE middleware heavily relies on network communication via the Hypertext Trans-
fer Protocol (HTTP). HTTP is also used for surfing the world wide web, so when you are able
to browse web sites from your client machine, you should be able to contact well-maintained
UNICORE Grids, too. Similarly to web browsing, you might run into trouble when you are
behind a proxy server. Additional problems may occur in very slow network environments,
where you might experience frequent connection timeouts. In both scenarios, you should check
the client’s network preferences (see Section 6.4.1).

5.2.2 Services disappear from the Grid Browser after a refresh

When trying to refresh the client’s information about a Grid service that you are not allowed to
access with your user certificate, the service node in the Grid Browser will change its appear-
ance. Depending on the preferences of the Grid Browser, inaccessible or failed nodes may also
be hidden from the Grid browser (see Section 6.4.2).

UNICORE Rich Client user manual 42

5.2.3 Outdated view of the Grid

In order to minimize network traffic, the UNICORE Rich Client caches quite a bit of informa-
tion about Grid services it finds. This also helps improve the performance in many situations.
However, it might lead to situations where the client shows an outdated view of the Grid (e.g.
it displays files that have already been deleted by someone else on the server). Often, a manual
refresh on the affected services or their parent services will help (usually invoked by double-
clicking a service; note: double-clicking files will lead to downloading them to a temporary
folder, instead double-click their parent folder).

5.2.4 Problems with the internal Web Browser

Eclipse provides an internal Web browser that can be used for displaying HTML content within
the Rich Client. Note, that the client’s welcome screen relies on this browser implementation,
too. On GTK Linux machines, the internal web browser is based on the xulrunner library, thus
absence of the xulrunner library can mess up the welcome screen and make the internal Web
browser unavailable. This might be fixed by installing the xulrunner library, e.g. on an Ubuntu
system type "sudo apt-get install xulrunner".

5.2.5 Problems with the Unity desktop

On Ubuntu, main menus may be hidden when using the Unity desktop (see Eclipse bug 330563).
A workaround seems to be to set the UBUNTU_MENUPROXY environment variable to 0
before starting the client, e.g. by "export UBUNTU_MENUPROXY=0".

5.2.6 Unsupported key format for interactive site access via SSH

When using a private/public key pair that was created with proprietary Windows tools e.g. F-
Secure, or Secure Shell Client (SSH.com), you might get an error message when trying to open
a terminal. The URC SSH plugin is not able to process such proprietary private key formats.
However, it is possible to convert the format of your existing private key to OpenSSH format,
which can be handled by the URC. To achieve this you can use the free Third Party Software
PuTTYGen:

1. Download the Windows application PuttyGen.exe (puttygen.exe). Alternatively, you can
download the whole Putty software (putty-x.xx.installer.exe) from http://www.chiark.greenend.org.uk/-
~sgtatham/putty/download.html

2. Execute PuttyGen (e.g. double-click puttygen.exe)

3. Click the load button in the Putty Key Generator window to load your existing private
key. Please remember to select All Files (".") from the file filter in the file browser. By
default the PuTTY Private Key file extension (.ppk) is set. Open the private key file which
you want to use in the UNICORE Rich Client.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

UNICORE Rich Client user manual 43

4. Enter the passphrase of your private key. You should see some information about the
loaded private key and the associated public key in the panel of the PuTTY window.

5. To create a copy of your private key in OpenSSH format, go to the Conversions menu and
select Export OpenSSH key.

6. Save the newly created private key in OpenSSH format.

7. Edit the private key in the Terminal Config view and select the newly created OpenSSH
key. You should now be able to authenticate to the desired target system given your public
key has already been placed there before (there is no need to exchange the public key).
Restart the URC if the private key used before is still cached in the system and open a
shell to the target system.

UNICORE Rich Client user manual 44

6 Reference

6.1 A brief history of UNICORE

The UNICORE (Uniform Interface to Computing Resources) system was originally conceived
in 1997 to enable German supercomputer centres to provide their users with a seamless, se-
cure, and intuitive access to the heterogeneous computing resources at the centres. As a result,
the projects UNICORE and UNICORE Plus were funded by BMBF, the German Ministry for
Education and Research, with the following objectives:

UNICORE was designed to hide the seams resulting from different hardware architectures,
vendor specific operating systems, incompatible resource management systems, and different
application environments. Retaining organisational and administrative autonomy of the par-
ticipating centres was a key objective of UNICORE. None of the service providers should be
forced to change historically grown computer centre practices, naming conventions, and secu-
rity policies to be able to use the full benefits of UNICORE. Security was built into the design
of UNICORE from the start relying on the X.509 standard. Certificates are used to authenticate
servers, software, and users as well as to encrypt the communication over the open internet.
Finally, UNICORE had to be usable by scientists and engineers without having to study vendor
or site-specific documentation.

Version 6 is a major milestone in the continuous development of the proven Grid software. It
retains the rich functionality of previous versions, like seamless access to heterogeneous re-
sources, complex workflows, and secure computing in a Grid environment. Application level
brokering has been added to meet user requirements. The graphical user interface has been im-
proved for greater efficiency and ease of use. Some user actions that turned out to be redundant
were consequently removed. In addition, the performance of UNICORE has been improved
substantially. Both the specific feedback from users and the advent of Grid standards and new
implementation tools have contributed greatly to this version. The software has been cleanly im-
plemented from scratch using web service technology and modern programming environments,
like Eclipse. This allows to remain interoperable with other standards based Grid solutions,
become easily extensible to meet new demands, and - most importantly - stay a safe investment
in the future. UNICORE development continues as an open source project that is driven and
supported by a dedicated team at the Jülich Supercomputing Centre.

6.2 Advanced security configuration

6.2.1 The Security Profiles view

This view comes in handy, when a user wants to access multiple Grids at the same time or
access a single grid with different user IDs/credentials in order to authenticate himself. For
instance, the user may define which certificate or which user ID (xlogin) to use for each registry
that he wants to access (a UNICORE service registry usually lists all services in a Grid). For
each registry, the configured credentials can be automatically passed down to all of its children,

UNICORE Rich Client user manual 45

i.e. the services that it contains. This way, the selected certificate is also used to access each of
the services in the registry (and their children, grand-children etc.).

This mechanism is not restricted to registries but can be applied to each service in the Grid, thus
an even more fine-grained security setup is possible.

Figure 23: The Security Profiles view

In order to configure the credentials to be used for a particular service, follow these steps (see
Figure 23):

1. Create a new security profile 1 .

2. Adjust all security settings for this profile to your needs, e.g. select a certificate 2 ,
choose whether a proxy certificate shall be created (only needed for accessing services
from other Grid middlewares like Globus).

3. Choose a user ID (xlogin) with which you want to access UNICORE services. If you
leave this field empty, the default account for UNICORE installation is used 3 .

UNICORE Rich Client user manual 46

4. Use the map to security profile action on the service in the Grid Browser view for creating
a new site entry 4 .

5. Select the new profile for the newly created site 5 . Alternatively, you can reuse an
existing profile and skip the steps 1-2.

Passing down credentials to child services works like this: for each site entry in the lower
table of the Security Profiles view, the first column shows a pattern which matches a particular
service. Using the wildcard character ‘*’ at the end of the pattern, the service’s children will
be matched, too. For example, the pattern for a registry called ‘UNICORE test Grid’ looks like
this:

Grid/UNICORE test Grid/*

Now imagine this registry contains a target system service called ‘DEMO-SITE’. The Grid
Browser displays the target system as a child node of the registry node. In order to determine
which credentials to use for acessing this service, the path of node names from the target system
node up to the top level node (called ‘Grid’) is determined and concatenated to form a single
URL (the names are separated by slashes). In our example, this results in

Grid/UNICORE test Grid/DEMO-SITE

Next, this URL is compared to all patterns that have been defined in the site entries. The longest
name path pattern that matches the URL ‘Grid/UNICORE test Grid/DEMO-SITE’ (i.e. the
pattern that contains the most slashes) determines which security profile is used for the service.
In our example, the pattern ‘Grid/UNICORE test Grid/*’ matches (because of the wildcard
character).

Note: Due to the fact that the Grid is really a graph of services (not a tree), there can actually
be multiple name paths for a given service. In this case, all name paths are matched against all
patterns and again, the longest pattern wins. In case of two or more matched patterns with equal
length, the choice of the ‘winning’ pattern is arbitrary.

6.3 Pull Down Menus

6.3.1 The File pull down menu

The File pull down menu gives access to a set of global functions. Frequently used functions
are also available on the tool bar below the pull down menu line.

1. File → New allows to create Projects (e.g. workflow projects), and other objects. To
create a new non-workflow project click File → New → Project. A new window is
displayed (Figure 24, left). Click Next. In the upcoming wizard page, type the name of
the new project, e.g. Project1 and click Finish. A new sub-directory is created in the
workspace. It is recommended not to change the default location. The data related with
the project is stored in a subdirectory of the workspace that has the same name as the

UNICORE Rich Client user manual 47

project. Experienced users may choose not to use the default location. Use the Browse
button to locate an existing directory or to create a new one. Note that the Navigator view
will show the projects not their location. If you specify a directory that already contains
a project an error message is displayed.

Figure 24: The New Project wizard

2. File → New → Job Project is used for creating job descriptions. The job creation wiz-
ard will appear. Click Finish to automatically open the job editor. Do not change the
file extension ‘.job’: otherwise a different file type is assumed and the wrong editor is
invoked.

3. File → New → Workflow Project is used for creating workflow descriptions. The same
dialog as before opens for providing a name for the new project (see Figure 24, right).
Click Finish to automatically open the workflow editor. Do not change the file extension
‘.flow’: otherwise a different file type is assumed and the wrong editor is invoked.

4. File → New → Other (see Figure 25, left) gives direct access to functions like creation of
files, folders, projects, or workflows.

Figure 25: Creating and opening files

UNICORE Rich Client user manual 48

5. File → Open File invokes the system file browser (Figure 25, right) and allows to open
the selected file in the appropriate editor, depending on the file extension.

6. File → Save will copy a changed file to the original location. If the previously opened
file has not been changed since the last SAVE, the function is not available.

7. File → Save as allows to save the file under a new name anywhere in the file system.

8. File → Save all saves all previously changed files.

9. File → Import allows you to import Eclipse projects from different source formats. This
can be used for importing workflow projects which have been exported as file archives
(zip or tar, see Figure 26). Additional Eclipse plugins may introduce additional types of
projects and additional ways of importing such projects from external resources.

Figure 26: Importing an archived project

10. File → Export can be used for exporting projects from your workspace to external re-
sources. In order to export a project to a file archive, select General → Archive File and
follow the instructions (see Figure 27).

UNICORE Rich Client user manual 49

Figure 27: Exporting a project to an archive

11. File → Properties is only available on some selected objects in the client. For instance,
if you select a file in the Navigator view, this item becomes available. By clicking it, a
dialog is activated that displays a number of properties of the file (e.g. its path, type, last
modification date).

12. File → Exit terminates the client. If unsaved objects exist, you are prompted to save the
changes.

6.3.2 The Edit pull down menu

1. Edit → Undo will undo the latest change that has been made in the editor that holds the
focus.

2. Edit → Redo will redo the latest change that has been made in the editor that holds the
focus. Only available when a change has been undone.

3. Edit → Cut is used to cut the selected items (e.g. text from a text editor or text field).

4. Edit → Copy will copy selected items to the clipboard.

5. Edit → Paste will paste items from the clipboard to the selected widget.

6. Edit → Find/Replace allows to search for all occurrences of a textual expression inside a
widget that holds text and (optionally) replace it.

6.3.3 The Window pull down menu

The Window pull down menu allows to manage perspectives, views, and working sets. You
may change preferences and alter the security configuration.

UNICORE Rich Client user manual 50

1. Window → Open Perspective shows the selected perspectives. Further perspectives may
be activated by clicking on Other. A window opens listing the available perspectives.
Clicking on the name, e.g UNICORE, followed by OK opens the perspective (see Fig-
ure 28, left).

Figure 28: Switch and customize perspectives

2. Window → Customise Perspective (see Figure 28, right) allows to change the appearance
of a particular perspective. It can be used to hide or show icons on the tool bar or hide
and show functions in the pull down menus. Warning: changing the defaults can create
confusion and prevent efficient problem determination.

3. Window → Save Perspective As. . . allows for saving a modified copy under a different
name). It is good practice to retain the original one.

4. Window → Reset Perspective restores a changed perspective to its default values. This
is an extremely useful function if you have destroyed the familiar appearance through
inadvertent mouse clicks.

5. Window → Close Perspective hides the selected perspective.

6. Window → Close All Perspectives hides all perspectives.

7. Window → Show View → Other. . . opens the list of available views. Selecting one of the
views followed by OK opens the view. You may restrict the displayed views by typing
part of the name in the box showing type filter text.

8. Window → Preferences this opens the preference pages for customising the way the UNI-
CORE client works and appears. See Section 6.4 for a more detailed discussion of client
preferences.

9. Window → Security Configuration opens the Keystore, Truststore and Security Profiles
views for changing security related settings.

UNICORE Rich Client user manual 51

6.3.4 The Help pull down menu

The Help pull down menu allows to access details about the installed client software. It also
allows to update the software from a distribution server.

1. Help → Welcome will re-open the client’s welcome screen (a series of HTML pages
that is shown when the client is started for the first time). The welcome screen contains
references to important help topics, first steps to perform in order to configure the client
correctly, and links to online resources like the UNICORE project home or video tutorials
covering the usage of the UNICORE Rich Client.

2. Help → About UNICORE Rich Client shows some version information about the client
and its components. For example, clicking on Plugin Details shows detailed information
about each software component (plugin in Eclipse terminology).

3. Help → Help Contents tries to open the HTML-based Eclipse help system in a web
browser.

4. Help → Search allows for performing full text queries on the content of all help pages
and lists the results.

5. Help → Dynamic Help opens a view that displays helpful information concerning a se-
lected object in the client. Note that only some objects in the client provide helpful
information on their usage.

6. Help → Software Updates → Find and Install. . . allows to update the Client and its
components to the most current versions (see Figure 29). In order to perform an update,
select Search for updates of the currently installed features. The search will then be
performed. In the following dialog, select the features to be updated from the list of
available features with updates.

UNICORE Rich Client user manual 52

Figure 29: Update the client

7. Help → Software Updates → Download Grid Applications can be used for downloading
application specific graphical user interfaces (GUIs) from the Grid. It is only available if
one or more services that offer such user interfaces could be found in the registries that
have been added by the user. Application specific GUIs can be used in order to create job
descriptions for single jobs or embedded jobs in workflows.

8. Help → Key Assist shows the table of available keyboard shortcuts that may be used in
addition to the mouse.

6.4 Preferences

Each Eclipse-based application provides a set of pages for changing user preferences. The
basic Eclipse framework already allows for the customisation of settings like colours and fonts
to be used throughout the client or key bindings for certain actions. Additional plugins may
extend the existing set of preferences. The UNICORE specific plugins use this mechanism for
introducing a whole range of new options that determine their mode of operation. This section
discusses these UNICORE-related preference settings.

UNICORE Rich Client user manual 53

Figure 30: The preferences page

In order to manage a large set of different preferences, Eclipse organises them in categories that
form a tree structure. This structure is shown to the left of the preferences panel and allows to
select the category of options you wish to change. Depending on the selected category a differ-
ent preference page opens on the right side of the panel. In the first example (Figure 30), the
category Colours and Fonts has been selected. Clicking on Change. . . opens a font selector di-
alog. You may Apply the change or Restore Defaults. OK leaves the Preference Panel retaining
the changes while Cancel leaves the panel and discards the changes.

UNICORE Rich Client user manual 54

6.4.1 General preferences for UNICORE

Figure 31: UNICORE related preferences

There is a dedicated preference category containing UNICORE related settings:

1. User Expertise Level: The client targets a wide range of users with varying experience
and knowledge about the Grid. Switching to higher levels will reveal more details to the
user and enable additional actions. The default is beginner.

2. Default File transfer protocol: Users can choose from different protocols for transferring
files to and from UNICORE storages, e.g. the Baseline file transfer (a fast HTTP based
protocol) and the OGSA Random Access ByteIO (a slower but widely supported protocol).
Setting this to Automatic will try to auto-detect the fastest available protocol (note that
this is only supported with UNICORE >= 6.4.2).

3. Number of parallel streams for UFTP transfers: UFTP is a high performance file transfer
protocol that uses multiple parallel TCP streams for transmission. This setting determines
the number of parallel streams. Caution, setting this too high might degrade performance,
as merging the streams creates a certain overhead.

UNICORE Rich Client user manual 55

4. Public name of client host for UFTP transfers: The UFTP protocol requires the client to
explicitly state it’s host name. The client tries to guess this value, thus it only needs to be
changed if you experience problems with UFTP transfers.

5. Use encryption during UFTP transfers: Set this option to use encryption during file trans-
fers when using UFTP protocol.

6. Connection timeout for service calls (ms): This option determines how quickly the client
will give up when a server does not respond to its requests. The default is 20,000 mil-
liseconds. Setting this value too low will prevent the client from communicating with
Grid services altogether.

7. HTTP Proxy settings: If you connect to the internet via an HTTP proxy server, you can
provide the connection details in this form.

6.4.2 Preferences for the Grid Browser

Figure 32: Grid Browser preferences

The following options can be found in the Grid Browser sub-category:

UNICORE Rich Client user manual 56

1. Number of Grid Browser levels to refresh on startup: An integer number specifying how
many levels of services in the Grid Browser should be refreshed when the client is started.
Refreshing means that the services are contacted in order to update cached information
about them. Zero or negative numbers will prevent the Grid Browser from refreshing
services during startup.

2. Hide failed Grid services: When enabled, this option will filter out all services that cannot
be contacted by the client. These services will not be displayed in the Grid Browser
anymore.

3. Hide Grid services that you don’t have access to: When enabled this will filter out all
Grid services that could not be contacted due to access restrictions.

4. Chunk size when listing many services: Target systems can execute many jobs and Grid
storages can contain lots of files. If the client just tried to list all jobs, services, and files
on the Grid, it could easily run out of memory. Therefore, the number of child nodes
displayed in the Grid Browser when refreshing its parent node is limited. Additional
nodes can be displayed by double-clicking or expanding a node called ‘. . . ’ which can
be found at the end of the list of child nodes when the parent node seems to contain
additional children. The number that is entered in this preference field determines the
number of child nodes that are listed when first refreshing its parent and the number of
nodes that are shown in addition, when the ‘. . . ’ node is opened.

5. Number of Grid files/folders being persisted on shutdown: Grid storages may contain
thousands of files. Persisting all associated Grid browser nodes to disk may use up a lot
of disk space, and might increase startup and shutdown times.

UNICORE Rich Client user manual 57

6.4.3 Preferences for jobs

Figure 33: Preferences regarding installed application GUIs and job descriptions

The following options can be found in the Jobs sub-category:

1. Default lifetime for jobs (hours): The amount of time after which submitted jobs are
destroyed and cleaned up automatically. Once a job has been destroyed, its output files
cannot be restored. This option can be overridden by setting the job’s lifetime in the Job
Editor (see Section 3.5.1).

2. Application directories: A list of directory locations that hold application specific user
interfaces that have been installed so far. New user interfaces for applications can either
be downloaded from the Grid (see Section 6.3.4) or manually copied to one of these
directories. When interfaces are downloaded by the client, the user interface packages
are put into the first directory in this list.

3. Time between polling job status: In monitoring mode, the job editor occasionally polls
for changes in the submitted job’s execution status until the job has finished or failed.
This option will set the amount of time until the next status check occurs.

UNICORE Rich Client user manual 58

6.4.4 Security preferences

Figure 34: Security related preferences

The following options can be found in the Security sub-category:

1. Keystore file: The location of the Java keystore (.jks) file to be used for holding the user’s
private keys and the trusted certificates. The location can be changed by either directly
entering a new path or clicking the Browse button, which opens a file browser.

2. Store the user’s password in the encrypted keyring file: Users have frequently asked for
a way to start the client without having to supply the same password each time. When
this preference is set to true, the client will save the user’s password in an encrypted
file managed by Eclipse, the so-called keyring file. However, using this feature is NOT
RECOMMENDED by the UNICORE team, as it weakens the security model of the Grid:
An intruder will be able to take over a user’s Grid identity simply by starting the client.

3. Show certificate expiry warnings at client startup: When this option is enabled, the client
will issue a warning during startup for each certificate that has expired or will expire soon.

UNICORE Rich Client user manual 59

6.4.5 Preferences for terminal connections

Figure 35: Terminal connection preferences

The following options can be found in the Terminal sub-category:

1. Size of history (in lines): The terminal view keeps a certain amount of lines in memory
so the user can scroll up to see previous commands and outputs.

2. Automatically close tabs of terminated sessions: When a terminal session ends (e.g. when
the user types "exit") the corresponding tab in the terminal view can be closed automati-
cally.

UNICORE Rich Client user manual 60

6.4.6 Preferences for workflows

Figure 36: Workflow specific preferences

The following options can be found in the Workflows sub-category:

1. Default lifetime for workflows: The amount of time after which submitted workflows are
being destroyed and cleaned up automatically. All jobs that have been submitted during
workflow execution are cleaned up as well.

2. Time between polling workflow status: In monitoring mode, the workflow editor occa-
sionally polls for changes in the submitted workflow’s execution status until the workflow
has finished or failed. This option will set the amount of time until the next status check
occurs.

UNICORE Rich Client user manual 61

6.5 Optional command line arguments

This is a selection of additional command line options that alter the behaviour of the client.

Table 1: Command line options and their effects

Option Effect
-configuration
path

The path of the configuration folder containing basic configuration
files and the user’s encrypted keyring file which might be used for
storing passwords.

-data path The path of the workspace on which to run the client platform. The
workspace location is also the default location for projects.

-vm path The location of Java Runtime Environment (JRE) to use to run the
client platform.

-vmargs args When passed to the client, this option is used to customise the
operation of the Java VM used to run the client. If specified, this
option must come at the end of the command line. The given
arguments are dependent on the VM that is being run. VM
arguments can also be added to the end of the
UNICORE_Rich_Client.ini file, one per line.

Examples:

1. Use c:\myProjects as workspace directory:

UNICORE_Rich_Client.exe -data c:\myProjects

1. Java is installed at c:\jre\bin:

UNICORE_Rich_Client.exe -vm c:\jre\bin

1. Allow the Java heap to use up to 256 MB of memory:

UNICORE_Rich_Client.exe -vmargs -Xmx256M

UNICORE Rich Client user manual 62

7 Glossary

CA
Certification Authority: An entity which issues digital certificates for use by other parties.
CA’s are characteristic of many public key infrastructure (PKI) schemes.

GUI
Graphical User interface: A set of visual controls that steer a computer program. In
contrast to a command line interface, it usually requires less typing because most actions
can be performed via mouse clicks.

HTTP
Hypertext Transfer Protocol: A communications protocol. Its use for retrieving inter-
linked text documents (hypertext) led to the establishment of the World Wide Web.

JRE
Java Runtime Environment: A set of computer programs and data structures which use a
virtual machine model for the execution of JAVA programs.

OGSA
Open Grid Services Architecture: An architecture of interacting services. It was de-
scribed in the paper ‘The Physiology of the Grid – An Open Grid Services Architec-
ture for Distributed Systems Integration’ and combines ideas and technologies from both
Web- and Grid Services to provide a basis for service oriented Grid architectures (see
http://www.globus.org/alliance/publications/papers/ogsa.pdf).

SSL
Secure Sockets Layer: A widespread cryptographic protocol for securing connections on
the internet. Uses Public key encryption for certificate-based authentication and symmet-
ric cipher-based traffic encryption.

XML
Extensible Markup Language: A text format derived from the Standard Generalized
Markup Language (ISO 8879, see http://www.iso.org). XML is used to exchange data on
the Web and it is the basis for a variety of languages and protocols (http://www.w3.org/-
XML/).

SOA
Service Oriented Architecture: A software architecture that defines the use of software
services to support the requirements of business processes and users on a computer
network. The underlying paradigm emphasizes the definition of slim and platform-
independent communication interfaces in order to achieve loose coupling. The SOA
Reference Model provided by the OASIS Committee Specification, can be found at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.

http://www.globus.org/alliance/publications/papers/ogsa.pdf
http://www.iso.org
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

	Introduction
	Installation and Startup
	Prerequisites
	Procedure

	Basic usage guide
	Welcome screen
	The Eclipse workbench
	Basic security configuration
	Browsing and monitoring the Grid
	Job submission and visualisation of job outcomes
	The Workflow editor
	Interactive site access

	Advanced Usage Scenarios
	File sets and file names with wildcards
	Metadata Management Functions

	Troubleshooting
	Event Dialogs and the Client Log
	Common Problems

	Reference
	A brief history of UNICORE
	Advanced security configuration
	Pull Down Menus
	Preferences
	Optional command line arguments

	Glossary

